PTEN对H_2O_2诱导的BK_(Ca)通道激活的调节研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大电导钙依赖性钾通道(Large conductance calcium and voltage-dependentpotassium,BK_(Ca)通道)分布广泛,受氧化、磷酸化、胞内钙浓度等因素的调节,在血管、神经内分泌等生理、病理过程中发挥重要的作用。过氧化氢(Hydrogen peroxide,H_2O_2)属于活性氧(ROS)的重要成员,既是细胞损伤的因素,又是胞内的第二信使。PTEN具有负调控PI3K的作用,能调节细胞的大小、生长、凋亡、迁移等,是当前研究的热点之一。本研究以膜片钳技术为基础,结合分子、细胞生物学技术,从H_2O_2对BK_(Ca)通道的作用,PTEN对H_2O_2诱导的BK_(Ca)通道激活的作用和PTEN磷脂酶活性对H_2O_2诱导的BK_(Ca)通道激活的调节等三个方面阐释PTEN、BK_(Ca)通道和H_2O_2之间的相互关系,旨在阐明H_2O_2激活BK_(Ca)通道、舒张血管的分子机制,为进一步探索氧化诱发的心血管疾病机制提供基础。
     本文以鼠源BK_(Ca)通道α亚基(Slo)基因(mSlo)在HEK 293细胞表达,运用inside-out和cell-attached两种不同的膜片钳记录模式检测BK_(Ca)通道电流,研究H_2O_2对BK_(Ca)通道的作用。在inside-out模式下,发现以Oμmol Ca~(2+)电极外液灌流时H_2O_2能明显抑制BK_(Ca)通道电流,且DTT对抑制的电流有部分恢复作用。而以10μmolCa~(2+)电极外液灌流时,H_2O_2、DTT对BK_(Ca)通道电流均无明显作用。说明H_2O_2对BK_(Ca)通道的作用主要依靠氧化还原效应影响通道对Ca~(2+)的敏感性。在cell-attached模式下,我们发现H_2O_2能显著、快速增强BK_(Ca)通道活性,表明H_2O_2刺激BK_(Ca)通道能产生两种完全不同的作用。而巯基特异性的氧化剂DTNB在两种模式下均抑制BK_(Ca)通道活性,说明在cell-attached模式下H_2O_2和DTNB对BK_(Ca)通道的作用机制不同。H_2O_2对BK_(Ca)通道的影响受作用方式和H_2O_2浓度的影响。
     为了研究PTEN在H_2O_2激活BK_(Ca)通道电流中的作用,我们构建了PTEN-Tdimer2的嵌合基因克隆表达质粒。通过将PTEN_(wt)与mSlo或mSlo和hβ1在HEK 293细胞共转染,在cell-attached模式下记录BK_(Ca)通道电流,发现在PTEN_(wt)过表达的细胞上,不管有无β1的表达,H_2O_2刺激初始10 min都不会明显增加BK_(Ca)通道的活性。此结果不仅说明PTEN能抑制H_2O_2诱导的BK_(Ca)通道激活,而且证实β1亚基的存在并不影响PTEN的作用。进一步以PI3K抑制剂LY294002或Wortmannin孵育细胞,在cell-attached模式下记录电流,发现H_2O_2刺激初始10 min也并不明显增强BK_(Ca)通道活性,说明PI3K参与了H_2O_2诱导的BK_(Ca)通道激活过程。为进一步阐明PI3K/PTEN通路对H_2O_2诱导BK_(Ca)通道激活的生理、病理学意义,我们观测了LY294002对H_2O_2诱导的血管舒张的作用,发现LY294002能明显抑制H_2O_2诱导的血管舒张,但当BK_(Ca)通道阻断剂Iberiotoxin存在时,LY294002的抑制作用消失,说明PI3K是通过BK_(Ca)通道的调节参与H_2O_2诱导的血管环舒张作用。
     为了进一步阐明PTEN对H_2O_2激活BK_(Ca)通道的抑制作用机制,将mSlo与磷脂酶活性缺失的PTEN_(C124S)或PTEN_(G129E)在细胞共表达,发现H_2O_2诱导的BK_(Ca)通道激活并没有被抑制,说明PTEN对H_2O_2诱导的BK_(Ca)通道激活的抑制作用主要是通过其磷脂酶活性实现的。针对PTEN蛋白的磷脂酶活性,我们应用Western Blot分析了H_2O_2刺激PTEN_(wt)、PTEN_(C124S)、PTEN_(G129E)过表达细胞产生的p-AKT表达变化,发现H_2O_2刺激初期并不影响PTEN对p-AKT表达的抑制作用,但是在刺激30 min后p-AKT的表达增加,可能与H_2O_2对PTEN的氧化有关。通过激光共聚焦扫描显微镜检测H_2O_2刺激PTEN_(wt)、PTEN_(C124S)、PTEN_(G129E)过表达细胞后胞内钙浓度变化,发现与对照组细胞相比,在PTEN_(wt)过表达细胞中H_2O_2引起胞内钙浓度增加明显降低,时间上显著延长,而在磷脂酶活性缺失的PTEN_(C124S)和PTEN_(G129E)过表达细胞中却没有明显变化。说明H_2O_2诱导的BK_(Ca)通道激活是受PTEN的磷脂酶活性调节,p-AKT、钙浓度的变化可能是作用于BK_(Ca)通道的重要途径。
Large conductance calcium and voltage-dependent potassium(BK_(Ca)) channels are ubiquitously distributed and play a pivotal role in physiological and pathological condition, such as vascular tone,neuronal secretion.In general,the BK_(Ca) channel function is regulated by oxidation,phosphorylation,intracellular calcium concentration and others. H_2O_2 is one of members of Reactive Oxygen Species(ROS) and also plays an important role in physiological and pathological processes.It not only causes oxidative damages to cellular function,but also acts as a second messenger.PTEN negatively controls the activity of PI3K to regulate cellular function,such as cell size,cell growth,apoptosis and migration.In this study,the relationship between H_2O_2,BK_(Ca) channels and PTEN was elucidated by studying the effect of H_2O_2 on BKca channel activity,PTEN and its lipid phosphatase activity on H_2O_2- induced BK_(Ca) channel activation.This study is to prove the molecular mechanism of H_2O_2-induced BK_(Ca) channel activation or vasodilation and provide evidences for discovering the mechanism of oxidation induced vascular diseases.
     In this study,BK_(Ca) channel encoded by mouse Slo was heterologously expressed in HEK 293 cells and the typical BKc,channel currents were recorded to study the effects of H_2O_2 on BK_(Ca) channel in inside-out and cell-attached configurations.In inside-out configurations,our results showed that BK_(Ca) channel current was inhibited after exposure to H_2O_2 at 0μmol Ca~(2+) bath solutions,and the inhibition could be reversed partially by DTT.However,the effects of H_2O_2 and DTT on BK_(Ca) channel were abolished at 10μmol Ca~(2+) bath solutions.These data suggested that the effect of H_2O_2 on BK_(Ca) channel is in a voltage and Ca~(2+)-dependent manner and H_2O_2 could decrease the Ca~(2+) sensitivity of channels by thiol oxidation.In cell-attached configuration,we found that NP_o of single BK_(Ca) channels were significantly increased after application of H_2O_2.However,the specific sulfhydryl oxidant DTNB inhibited BK_(Ca) channel NP_o in two different configurations,suggesting that the regulation of BK_(Ca) channels by DTNB and H_2O_2 is different.It also elucidate that the effects of H_2O_2 on BK_(Ca) channels depend on different action modes and H_2O_2 concentrations.
     To explore the effect of PTEN on H_2O_2-induced BK_(Ca) channel activation,the PTEN-Tdimer2 plasmids were constructed in our studies.The PTEN-Tdimer2 plasmids and mSlo in the presence or absence of hβ1 were coexpressed in HEK 293 cells and the typical BK_(Ca) channel currents were recorded in cell-attached configuration.Contrary to H_2O_2-induced BK_(Ca) activation,the BK_(Ca) channel currents and conductance in the absence or presence of hβ1 were not changed in PTEN overexpressing cells during the initial 10 min treatment with H_2O_2.It not only suggested that PTEN inhibited H_2O_2-induced BK_(Ca) channel activation,but also verified that the inhibition of PTEN was not affected byβ1. Similarly,the typical BK_(Ca) channel currents were recorded in cell-attached configuration when HEK293 cells expressing mSlo channels were pre-incubated with the PI3K inhibitor LY294002 or Wortmannin for 1 hour.The results showed that the effect of LY294002 or Wortmannin on H_2O_2-induced BK_(Ca) channel activation was same as PTEN,suggesting that PI3K activity is involved in H_2O_2-induced BK_(Ca) channel activation.In order to elucidate the effects of PI3K/PTEN pathway on H_2O_2- induced BK_(Ca) channel activation in physiological and pathological processes,H_2O_2-induced relaxation of isolated rat thoracic aortas was investigated.The results showed that H_2O_2-induced relaxation of aortal rings was decreased by PI3K inhibitor LY294002.However,the effect of LY294002 was abolished in the presence of BK_(Ca) channel inhibitor Iberiotoxin.It suggested that PI3K activity is involved in H_2O_2-induced relaxation of aorta tings via BK_(Ca) channel activation.
     To further elucidate the mechanism of PTEN on the inhibiton of H_2O_2-induced BK_(Ca) channel activation,mSlo was coexpressed with catalytically inactive PTEN_(C124S)/ PTENG_(G129E) mutants that lack lipid phosphatase activity.We found that the mutants produced no regulation on the H_2O_2-induced BK_(Ca) channel activation,suggesting that PTEN regulates H_2O_2-induced BK_(Ca) channels activation by acting as a phosphatidylinositol 3-phosphatase.Meanwhile,the p-AKT expression in PTEN_(wt), PTEN_(C124S) and PTEN_(G129E) overexpressing cells after H_2O_2 application was investigated by Western Blot analysis.We found that the p-AKT expression inhibited by PTEN was not changed after H_2O_2 addition for 10 min.However,the inhibition was changed after H_2O_2 addition for 30 min.The results suggested that the change of p-AKT expression may be through oxidation of PTEN by H_2O_2.The cytoplasmic free calcium concentrations ([Ca~(2+)]_i) in PTEN_(wt),PTEN_(C124S) and PTEN_(G129E) overexpressing cells afeer H_2O_2 application were also detected by laser scanning confocal microscopy.We found that the increase of[Ca~(2+)]_i induced by H_2O_2 was also inhibited in PTEN_(wt) overexpressing cells. However,the results were not detected in PTEN_(C124S) and PTEN_(G129E) overexpressing cells. These data suggested that the lipid phosphatase activity of PTEN is involved in H_2O_2-induced BK_(Ca) channel activation,p-AKT and[Ca~(2+)]_i may be important downstream signal molecules for H_2O_2-induced BK_(Ca) channel activation.
引文
[1] Marty A. Ca~(2+)-dependent K channels with large unitary conductance in chromaffin cell membrane. Nature, 1981, 291: 497-500
    [2] Orio P. , Torres Y. , Rojas P. , et al. Structural determinants for functional coupling between the β and a subunits in the Ca~(2+)-activated K~+ (BK) channel. J. Gen. Physiol., 2006, 127: 191 -204
    [3] Sun X. P., Bruce Y., Alan D. G. Electrophysiological properties of BK channels in Xenopus motor nerve terminals. J. Physiol., 2004, 557: 207 - 228
    [4] Seto S. W. , Au A. L. , Lam T. Y. , et al. Modulation by simvastatin of iberiotoxin- sensitive, Ca~(2+)-activated K~+ channels of porcine coronary artery smooth muscle cells. Br. J. Pharmacol., 2007, 151: 987-997
    [5] Wang Y. J. , Sung R. J. , Lin M. W. Contribution of BK_(Ca)-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. J. Membrane Biol., 2006, 213: 175-185
    [6] Knaus H. G. , Garcia-Calvo M. , Kaczorowski G. J. , et al. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J. Biol. Chem., 1994, 269: 3921-3924
    [7] Wang Y. W. , Ding J. P. , Xia X. M. , et al. Consequences of the stoichiometry of Slol a and auxiliary p subunits on functional properties of large-conductance Ca~(2+)-activated K~+ channels. J. Neurosci., 2002, 22: 1550-1561
    [8] Tian L. , McClafferty H. , Chen L. , et al. Reversible tyrosine protein phosphorylation regulates large conductance voltage- and calcium-activated potassium channels via cortactin. J. Biol. Chem., 2008, 283: 3067-3076
    [9] Atkinson N. S. , Robertson G. A. , Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science, 1991, 253: 551-555
    [10] McCobb D. P. , Fowler N. L. , Featherstone T. , et al. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol, 1995, 269: H767-H777
    [11] Butler A. , Tsunoda S. , McCobb D. P. , et al. mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science, 1993, 261: 221-224
    [12] Schreiber M., Wei A., Yuan A., et al. Slo3, a novel pH-sensitive K~+ channel from mammalian spermatocytes. J. Biol. Chem., 1998, 273: 3509-3516
    [13] Uebele V. N. , Lagrutta A. , Wade T. , et al. Cloning and functional expression of two families of p-subunits of the large conductance calcium-activated K~(2+) channel. J. Biol. Chem., 2000, 275: 23211-23218
    [14] Ma Z. , Lou X. J. , Horrigan F. T. Role of charged residues in the S1-S4 voltage sensor of BK channels. J. Gen. Physiol., 2006, 127: 309-328
    [15] Wang B., Brenner R. An S6 mutation in BK channels reveals 61 subunit effects on intrinsic and voltage-dependent gating. J. Gen. Physiol., 2006, 128: 731-744
    [16] Suarez-Kurtz G. , Garcia M. L. , Kaczorowski G. J. Effects of charybdotoxin and iberiotoxin on the spontaneous motility and tonus of different guinea pig smooth muscle tissues. J. Pharmacol. Exp. Ther. ,1991, 259: 439-443
    [17] Garcia-Calvo M. , Knaus H. , Garcia M. L. , et al. Functional unit size of the charybdotoxin receptor in smooth muscle. Proc. Natl. Acad. Sci. USA, 1994, 91: 4718-4722
    [18] Koval O. M. , Fan Y., Rothberg B. S. A role for the SO transmembrane segment in voltage-dependent gating of BK channels. J. Gen. Physiol., 2007, 129: 209-220
    [19] Moss B. L., Magleby K. L. Gating and conductance properties of BK channels are modulated by the S9-S10 tail domain of the a subunit: a study of mSlol and mSlo3 wild-type and chimeric channels. J. Gen. Physiol., 2001, 118: 711-734
    [20] Zhou X. B., Arntz C., Kamm S., et al. A molecular switch for specific stimulation of the BK_(Ca) channel by cGMP and cAMP kinase. J. Biol. Chem. , 2001, 276: 43239-43245
    [21] Qian X., Nimigean C. M., Niu X., et al. Slol tail domains, but not the Ca~(2+) bowl, are required for the 131 subunit to increase the apparent Ca~(2+) sensitivity of BK channels. J. Gen. Physiol., 2002, 120: 829-843
    [22] Piskorowski R. , Aldrich R. W. Calcium activation of BK_(Ca) potassium channels lacking the calcium bowl and RCK domains. Nature, 2002, 420: 499-502
    [23] Dong J. , Shi N. , Berke I. , et al. Structures of the MthK RCK domain and the effect of Ca~(2+) on gating ring stability. J. Biol. Chem., 2005, 280: 41716-41724
    [24] Yang H. , Hu L. , Shi J. , et al. Mg~(2+) mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. Proc. Natl. Acad. Sci. USA, 2007, 104:18270-18275
    [25] McCartney C. E. , McClafferty H. , Huibant J. M. , et al. A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca~(2+)-activated K (BK) channel α-subunits. Proc. Natl. Acad. Sci. USA, 2005, 102: 17870-17876
    [26] Giangiacomo K. M. , Garcia-Calvo M. , Knaus H. G. , et al. Functional reconstitution of the large-conductance, calcium-activated potassium channel purified from bovine aortic smooth muscle. Biochemistry, 1995, 34: 15849-15862
    [27] Xia X. M. , Ding J. P. , Lingle C. J. Molecular basis for the inactivation of Ca~(2+)-and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J. Neurosci., 1999, 19: 5255-5264
    [28] Zeng X. , Xia X. M. , Lingle C. J. Species-specific differences among KCNMB3 BK β3 auxiliary subunits: Some p3 N-terminal variants may be primate-specific subunits. J. Gen. Physiol., 2008, 132: 115-129
    [29] Wang B. , Rothberg B. S. , Brenner R. Mechanism of β4 subunit modulation of BK channels. J. Gen. Physiol., 2006, 127: 449-465
    [30] Liu G. , Zakharov S. I. , Yang L. , et al. Locations of the β1 transmembrane helices in the BK potassium channel. Proc. Natl. Acad. Sci. U. S. A, 2008, 105: 10727-10732
    [31] Cox D. H. , Aldrich R. W. Role of the β1 subunit in large-conductance Ca~(2+)-activated K~+ channel gating energetics: Mechanisms of enhanced Ca~(2+) sensitivity. J. Gen. Physiol., 2000, 116: 411-432
    [32] Benzinger G. R. , Xia X. M. , Lingle C. J. Direct observation of a preinactivated, open state in BK channels with β2 subunits. J. Gen. Physiol., 2006, 127: 119-131
    [33] Xia X. M. , Ding J. P. , Lingle C. J. Inactivation of BK channels by the NH2 terminus of the β2 auxiliary subunit: An essential role of a terminal peptide segment of three hydrophobic residues. J. Gen. Physiol., 2003, 121: 125-148
    [34] Zeng X. H. , Ding J. P. , Xia X. M. , et al. Gating properties conferred on BK channels by the β3b auxiliary subunit in the absence of its NH2- and COOH termini. J. Gen. Physiol., 2001, 117: 607-627
    [35] Meera P. , Wallner M. , Toro L. A neuronalβ subunit (KCNMB4) makes the large conductance, voltage- and Ca~(2+)-activated K~+ channel resistant to charybdotoxin and iberiotoxin. Proc. Natl. Acad. Sci. USA, 2000, 97: 5562-5567
    [36] Peers C. , Wyatt C. N. The role of maxiK channels in carotid body chemotransduction. Respir. Physiol. Neurobiol., 2007, 157: 75-82
    [37] Cui J., Cox D. H., Aldrich R. W. Intrinsic voltage dependence and Ca~(2+) regulation of mslo large conductance Ca-activated K~+ channels, J. Gen. Physiol. , 1997, 109: 647-673
    [38] Najjar F. , Zhou H. , Morimoto T. , et al. Dietary K~+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am. J. Physiol. Renal Physiol., 2005, 289: 922-932
    [39] Shipston M. J. , Duncan R. R. , Clark A. G. Molecular components of large conductance calcium-activated potassium (BK) channels in mouse pituitary corticotropes. Mol. Endocrinol., 1999, 13: 1728-1737
    [40] Dimitropoulou C., Han G., Miller A. W. Potassium (BK_(Ca)) currents are reduced in microvascular smooth muscle cells from insulin-resistant rats. Am. J. Physiol. Heart Circ. Physiol., 2002, 282: 908-917
    [41] Pyott S. J. , Meredith A. L., Fodor A. A. , et al. Cochlear function in mice lacking the BK channel α, β1, or β4 subunits. J. Biol. Chem., 2007, 282: 3312-3324
    [42] Amberg G. C. , Santana L. F. Down regulation of the BK channel β1 subunit in genetic hypertension. Circ. Res., 2003, 93: 965-971
    [43] Thorneloe K. S., Meredith A. L., Knorn A. M. , et al. Urodynamic properties and neurotransmitter dependence of urinary bladder contractility in the BK channel deletion model of overactive bladder. Am. J. Physiol. Renal Physiol. , 2005, 289: F604-F610
    [44] Werner M. E. , Zvara P. , Meredith A. L. , et al. Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J. Physiol. , 2005, 567(2): 545-556
    [45] Bentzen B. H. , Osadchii O. , Jespersen T. , et al. Activation of big conductance Ca~(2+)-activated K~+ channels (BK) protects the heart against ischemia-reperfusion injury. Pflugers Arch. , 2009, 457: 979-988
    [46] Gong L. , Gao T. M. , Li X. , et al. Enhancement in activities of large conductance calcium-activated potassium channels in CA1 pyramidal neurons of rat hippocampus after transient forebrain ischemia. Brain Res. 2000, 24, 884: 147-154
    [47] Pluznick J. L. , Wei P. , Carmines P. K. , et al. Renal fluid and electrolyte handling in BK_(Ca)-β1-/- mice. Am. J. Physiol. Renal Physiol., 2003, 284: 1274-1279
    [48] S(?)rensen M. V., Matos J., Sausbier M. , et al. Aldosterone increases K_(Ca)1.1 (BK) channel-mediated colonic K~+ secretion. J. Physiol., 2008, 586: 4251-4264
    [49] Rüttiger L. R., Sausbier M., Zimmermann U., et al. Deletion of the Ca~(2+)-activated potassium (BK) α-subunit but not the BK β1-subunit leads to progressive hearing loss. Proc. Natl. Acad. Sci. USA, 2004, 101: 12922-12927
    [50] Sausbier M. , Hu, H. Arntz C. , et al. Cerebellar ataxia and purkinje cell dysfunction caused by Ca~(2+)-activated K~+ channel deficiency. Proc. Natl. Acad. Sci. USA, 2004, 101: 9474-9478
    [51] Shimomura K. , Horster F. , de Wet H. , et al. A novel mutation causing DEND syndrome: A treatable channelopathy of pancreas and brain. Neurology, 2007, 69: 1342-1349
    [52] Ge Z. D. , Zhang X. H. , Fung P. C. , et al. Endot helium-dependent hyperpolarization and relaxation resistance to NG-nitro-L-arginine and indomethacin in coronary circulation. Cardiovasc. Res., 2000, 46: 547-556
    [53] Herrera G. M. , Heppner T. J. , Nelson M. T. Regulation of urinary bladder smooth muscle contractions by ryanodine receptors and BK and SK channels. Am. J. Physiol. Regulatory Integrative Comp. Physiol., 2000, 279: 60-68
    [54] McGahon M. K. , Dash D. P. , Arora A. , et al. Diabetes downregulates large-conductance Ca~(2+)-activated potassium 131 channel subunit in retinal arteriolar smooth muscle. Circ. Res., 2007, 100: 703-711
    [55] Burnham M. P. , Johnson I. T. , Weston A. H. Reduced Ca~(2+)-dependent activation of large-conductance Ca~(2+)-activated K~+ channels from arteries of type 2 diabetic Zucker diabetic fatty rats. Am. J. Physiol. Heart Circ. Physiol. , 2006, 290: H1520-H1527
    [56] Sausbier M. , Arntz C. , Bucurenciu I. , et al. Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation, 2005, 112: 60-68
    [57] Nagaoka T., Hein T. W., Yoshida A., et al. Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels. Invest. Ophthalmol. Vis. Sci., 2007, 48: 4232-4239
    [58] Miura H. , Liu Y. , and Gutterman D. D. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: Contribution of nitric oxide and Ca~(2+)-activated K~+ channels. Circulation, 1999, 99: 3132-3138
    [59] Fallet R. W. , Bast J. P. , Fujiwara K. , et al. Influence of Ca~(2+)-activated K~+ channels on rat renal arteriolar responses to depolarizing agonists. Am. J. Physiol. Renal Physiol. ,2001, 280: 583-591
    [60] Benoit C. , Renaudon B. , Salvail D. , et al. EETs relax airway smooth muscle via an EpDHF effect: BK_(Ca) channel activation and hyperpolarization. Am. J. Physiol. Lung Cell Mol. Physiol. ,2001, 280: 965-973
    [61] Ohya S. , Kuwata Y. , Sakamoto K. , et al. Cardioprotective effects of estradiol include the activation of largeconductance Ca~(2+)-activated K~+ channels in cardiac mitochondria. Am. J. Physiol. Heart Circ. Physiol., 2005, 289: 1635-1642
    [62] Kang J. , Huguenard J. R. , Prince D. A. Development of BK channels in neocortical pyramidal neurons. J. Neurophysiol., 1996, 76: 188-198
    [63] Kang J., Huguenard J. R., Prince D. A. Two types of BK channels in immature rat neocortical pyramidal neurons. J. Neurophysiol., 1996, 76: 4194-4197
    [64] Hu S. , Labuda M. Z. , Pandolfo M. , et al. Variants of the KCNMB3 regulatory subunit of maxi BK channels affect channel inactivation. Physiol. Genomics, 2003, 15: 191-198
    [65] Samaranayake H., Saunders J. C., Greene M. I., et al. Ca~(2+) and K~+ (BK) channels in chick hair cells are clustered and colocalized with apical-basal and tonotopic gradients. J. Physiol., 2004, 560: 13-20
    [66] Widmer H. A. , Rowe I. C. , Shipston M. J. Conditional protein phosphorylation regulates BK channel activity in rat cerebellar Purkinje neurons. J Physiol. , 2003, 552: 379-391
    [67] Werner M. E. , Meredith A. L. , Aldrich, R. W. , et al. Hypercontractility and impaired sildenafil relaxations in the BK_(Ca) channel deletion model of erectile dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295: 181-188
    [68] Gragasin F. S. , Michelakis E. D. , Hogan A. , et al. The neurovascular mechanism of clitoral erection: Nitric oxide and cGMP-stimulated activation of BK_(Ca) channels. FASEB J., 2004, 18: 1382-1391
    [69] Chanrachakul B. , Matharoo-Ball B. , Turner A. , et al. Immunolocalization and protein expression of the a subunit of the large-conductance calcium-activated potassium channel in human myometrium. Reproduction, 2003, 126: 43-48
    [70] Zhou X. B. , Wang G. X. , Ruth P. , et al. BK_(Ca) channel activation by membrane-associated cGMP kinase may contribute to uterine quiescence in pregnancy. Am. J. Physiol. Cell Physiol. , 2000, 279: 1751-1759
    [71] Hou S. , Heinemann S. H. Hoshi T. , Modulation of BK_(Ca) channel gating by endogenous signaling molecules. Physiology, 2009, 24: 26-35
    [72] Sausbier M., Matos J. E., Sausbier U., et al. Distal colonic K~+ secretion occurs via BK channels. J. Am. Soc. Nephrol. , 2006, 17: 1275-1282
    [73] Spyridopoulos I. , Wischhusen J. , Rabenstein B. , et al. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism. Arterioscler. Thromb. Vasc. Biol., 2001, 21: 439-444
    [74] Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J., 1992, 6: 3177-3185
    [75] Cammisotto P. G., Bukowiecki L. J. Role of calcium in the secretion of leptin from white adipocytes. Am. J. Physiol. Regulatory Integrative Comp. Physiol. , 2004, 287: 1380-1386
    [76] Mizunami M., Yamashita S., Tateda H. Calcium-dependent action potentials in the second-order neurones of cockroach ocelli. J. Exp. Biol., 1987, 130: 259-274
    [77] Deucher A., Efimova T., Eckert R. L. Calcium-dependent involucrin expression is inversely regulated by protein kinase C (PKC) α and PKCδ. J. Biol. Chem., 2002, 277: 17032-17040
    [78] Womack M. D., Chevez C. , Khodakhah K. Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar purkinje Neurons. J. Neurosci., 2004, 24: 8818-8822
    [79] Meech R. W. , Standen N. B. Potassium activation in helix aspersa neurones under voltage clamp: A component mediated by calcium influx. J. Physiol. , 1975, 249: 211-259
    [80] Weisser-Thomas J. , Piacentino V. , Gaughan J. P. , et al. Calcium entry via Na/Ca exchange during the action potential directly con tributes to contraction of failing human ventricular myocytes. Cardiovasc. Res., 2003, 57: 974-985
    [81] Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev., 2005, 85: 201-279
    [82] Poburko D. , Liao C. H. , Breemen C. , et al. Mitochondrial regulation of sarcoplasmic reticulum Ca~(2+) content in vascular smooth muscle cells. Circ. Res. , 2009, 104: 104-112
    [83] Pelled D. , Lloyd-Evans E. , Riebeling C. , et al. Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca~(2+)-ATPase in a mouse model of sandhoff disease and prevention by treatment with N-Butyldeoxynojirimycin. J. Biol. Chem., 2003, 278: 29496-29501
    
    [84] Coppenolle F. V. , Abeele F. V. , Slomianny C. , et al. Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores. J. Cell Sci.,2004, 117:4135-4142
    
    [85] Wing M. R. , Bourdon D. M. , Harden T. K. PLC-e: A shared effector protein in Ras-, Rho-, and Gαβγ-mediated signaling. Mol. Interv., 2003, 3: 273-280
    [86] Pitcher J. A. , Fredericks Z. L. , Stone W. C. , et al. Phosphatidylinositol 4, 5-bisphosphate(PIP2) -enhanced G protein-coupled receptor kinase (GRK) activity. J. Biol. Chem., 1996, 271: 24907-24913
    [87] Naraghi M. , Neher E. Linearized buffered Ca~(2+) diffusion in microdomains and its implications for calculation of [Ca~(2+)]. at the mouth of a calcium channel. J. Neurosci., 1997, 17: 6961-6973
    [88] Plant P. J. , Yeger H. , Staub O. , et al. The C2 domain of the ubiquitin protein ligase nedd4 mediates Ca~(2+)-dependent plasma membrane localization. J. Biol. Chem., 1997, 272: 32329-32336
    [89] Venance L. , Stella N. , Glowinski J. , et al. Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J. Neurosci., 1997, 17: 1981-1992
    [90] Kannan M. S. , Prakash Y. S. , Brenner T. , et al. Role of ryanodine receptor channels in Ca~(2+) oscillations of porcine tracheal smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol., 1997, 272: 659-664
    [91] Bhat M. B., Zhao J., Zang W., et al. Caffeine-induced release of intracellular Ca~(2+) from Chinese hamster ovary cells expressing skeletal muscle ryanodine receptor. effects on full-length and carboxyl-terminal portion of Ca release channels. J. Gen. Physiol., 1997, 110:749-762
    [92] Wang Y. X. , Fleischmann B. K. , Kotlikoff M. I. Modulation of maxi-K~+ channels by voltage-dependent Ca~(2+) channels and methacholine in single airway myocytes. Am. J. Physiol. Cell Physiol. , 1997, 272: 1151-1159
    [93] Clapham D. E. Calcium signaling. Cell, 2007, 131: 1047-1058
    [94] Elmslie K. S. Identification of the single channels that underlie the N-type and L-type calcium currents in bullfrog sympathetic neurons. J. Neurosci. , 1997, 17: 2658-2668
    [95] Grunnet M. , Kaufrnann W. A. Coassembly of big conductance Ca~(2+)-activated K~+ channels and L-type voltage-gated Ca channels in rat brain. J. Biol. Chem., 2004; 279: 36445-36453
    [96] Hull D. S. , Green K. , Thomas L. , et al. Hydrogen peroxide-mediated corneal endothelial damage: induction by oxygen free radical. Invest. Ophthalmol. Vis. Sci. , 1984,25: 1246-1253
    [97] Fahl W. E. , Lalwani N. D. , Watanabe T. , et al. DNA damage related to increased hydrogen peroxide generation by hypolipidemic drug-induced liver peroxisomes. Proc. Natl. Acad. Sci. USA, 1984, 81: 7827-7830
    [98] Tarpey M. M. , Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ. Res., 2001, 89: 224-236
    [99] Doroshow J. H. , Davies K. J. Redox cycling of anthracyclines by cardiac mitochondria. II. formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J. Biol. Chem., 1986, 261: 3068-3074
    [100] Sohal R. S. Mitochondria generate superoxide anion radicals and hydrogen peroxide. FASEB J., 1997, 11: 1269-1270
    [101] Han D. , Canali R. , Rettori D. , et al. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol. Pharmacol., 2003, 64: 1136-1144
    [102] Liu H. , Ma Y. , Pagliari L. J. , et al. TNF-α-induced apoptosis of macrophages following inhibition of NF-κB: a central role for disruption of mitochondria. J. Immunol., 2004, 172: 1907-1915
    [102] Walzem R. L. , Watkins S. , Frankel E. N. , et al. Older plasma lipoproteins are more susceptible to oxidation: A linking mechanism for the lipid and oxidation theories of atherosclerotic cardiovascular disease. Proc. Natl. Acad. Sci. USA, 1995, 92: 7460-7464
    [104] Berlett B. S. , Stadtman E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem., 1997, 272: 20313-20316
    [105] Kanazawa K. , Kawashima S. , Mikami S. , et al. Endothelial constitutive nitric oxide synthase protein and mRNA increased in rabbit atherosclerotic aorta despite impaired endothelium-dependent vascular relaxation. Am. J. Pathol. , 1996, 148: 1949-1956
    [106] Mastroeni P. , Vazquez-Torres A. , Fang F. C. , et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. effects on microbial proliferation and host survival in vivo. J. Exp. Med. ,2000, 192:237-247
    [107] Vazquez-Torres A., Jones-Carson J., Mastroeni P. , et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med., 2000, 192: 227-236
    [108] Nelson M. T. Quayle J. M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. Cell Physiol. , 1995, 268: C799-C822
    [109] Yuan X. J. Voltage-gated K~+ currents regulate resting membrane potential and [Ca~(2+)]_i in pulmonary arterial myocytes. Circ. Res., 1995, 77: 370-378
    [110] Faber E. S. Sah P. Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist, 2003, 9: 181-194
    [111] Ledoux J. , Werner M. E. , Brayden J. E. , et al. Calcium-activated potassium channels and the regulation of vascular tone. Physiology, 2006, 21: 69-78
    [112] Zagorac D. , Yamaura K. , Zhang C. , et al. The effect of superoxide anion on autoregulation of cerebral blood flow. Stroke, 2005, 36: 2589-2594
    [113] Gutterman D. D. , Miura H. , Liu Y. Redox modulation of vascular tone: Focus of potassium channel mechanisms of dilation. Arterioscler. Thromb. Vasc. Biol. 2005, 25: 671-678
    [114] Hepp S. , Gerich F. J. , Müller M. Sulfhydryl oxidation reduces hippocampal susceptibility to hypoxia-induced spreading depression by activating BK channels. J. Neurophysiol. , 2005, 94: 1091-1103
    [115] Tang X. D. , Daggett H. , Hanner M. , et al. Oxidative regulation of large conductance calcium-activated potassium channels. J. Gen. Physiol. , 2001, 117: 253-274
    [116] DiChiara T. J. Reinhart P. H. Redox modulation of hslo Ca~(2+)-activated K~+ channels. J. Neurosci., 1997, 17: 4942-4955
    [117] Tang X. D. , Garcia M. L. , Heinemann S. H. , et al. Reactive oxygen species impair Slol BK channel function by altering cysteine-mediated calcium sensing. Nature, 2004, 11(2) : 171-178
    [118] Hu L. , Yang H. , Shi J. , et al. Effects of multiple metal binding sites on calcium and magnesium-dependent activation of BK channels. J. Gen. Physiol. , 2005, 127: 35-50
    [119] Schepers E. , Glorieux G. , Dhondt A. , et al. Role of symmetric dimethylarginine in vascular damage by increasing ROS via store-operated calcium influx in monocytes. Nephrol. Dial. Transplant., 2009, 24: 1429-1435
    [120] Camara A. K. , Aldakkak M. , Heisner J. S. , et al. ROS scavenging before 27℃ ischemia protects hearts and reduces mitochondrial ROS, Ca~(2+) overload, and changes in redox state. Am. J. Physiol. Cell Physiol., 2007, 292: C2021-C2031
    [121] Ferdinandy P. , Schulz R. , Baxter G. F. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol. Rev., 2007, 59: 418-458
    [122] Schnetkamp P. P. , Basu D. K. , Li X. B. , et al. Regulation of intracellular free Ca~(2+) concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with fluo- 3. II. thermodynamic competence of transmembrane Na~+ and K~+ gradients and inactivation of Na~+-dependent Ca~(2+) extrusion. J. Biol. Chem. ,1991, 266: 22983-22990
    [123] McNally J. S. , Saxena A. , Cai H. , et al. Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscler. Thromb. Vasc. Biol., 2005, 25: 1623-1628
    [124] Okabe E. , Kuse K. , Sekishita T. , et al. The effect of ryanodine on oxygen free radical-induced dysfunction of cardiac sarcoplasmic reticulum. Mol. Pharmacol. , 1988,34:388-394
    [125] Barlow R. S. , El-Mowafy A. M. , White R. E. H_2O_2 opens BK_(Ca) channels via the PLA2-arachidonic acid signaling cascade in coronary artery smooth muscle. Am. J. Physiol. Heart Circ. Physiol., 2000, 279: 475-483
    [126] Drouin A., Thorin-Trescases N., Hamel E., et al. Endothelial nitric oxide synthase activation leads to dilatory H_2O_2 production in mouse cerebral arteries. Cardiovasc. Res. ,2007, 73:73-81
    [127] Lin M. T. , Hessinger D. A. , Pearce W. J. , et al. Modulation of BK channel calcium affinity by differential phosphorylation in developing ovine basilar artery myocytes. Am. J. Physiol. Heart Circ. Physiol., 2006, 291: 732-740
    [128] Barman S. A., Zhu S., White R. E. PK.C activates BK_(Ca) channels in rat pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am. J. Physiol. Lung Cell Mol. Physiol., 2004, 286: 1275-1281
    [129] Ling S. , Woronuk G. , Sy L. , et al. Enhanced activity of a large conductance, calcium-sensitive K~+ channel in the presence of Src tyrosine kinase. J. Biol. Chem., 2000, 275: 30683-30689
    [130] Zou S. , Jha S. , Kim E. Y. , et al. The β1 subunit of L-type voltage-gated Ca~(2+) channels independently binds to and inhibits the gating of large-conductance Ca~(2+)-activatec K~+ channels. Mol. Pharmacol., 2008, 73: 369-378
    [131] O'Malley D. Harvey J. Insulin activates native and recombinant large conductance Ca~(2+)-activated potassium channels via a mitogen-activated protein kinase- dependent process. Mol. Pharmacol., 2004, 65: 1352-1363
    [132] Hagen B. M., Sanders K. M. Deglycosylation of the β1-subunit of the BK channel changes its biophysical properties. Am. J. Physiol. Cell Physiol. , 2006, 291: C750-C756
    [133] Denson D. D., Li J., Wang X. , et al. Activation of BK channels in GH3 cells by a c-PLA2-dependent G-protein signaling pathway. J. Neurophysiol. , 2005, 93: 3146-3156
    [134] Lauterbach B. , Barbosa-Sicard E. , Wang M. H. , et al. Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension, 2002, 39: 609-613
    [135] Daikoku T. , Dey S. K. Two faces of PTEN. Nature Medi. , 2008, 14 (11) : 1192-1193
    [136] Mao J. H. , To M. D. , Perez-Losada J. , et al. Mutually exclusive mutations of the pten and ras pathways in skin tumor progression. Genes Dev. , 2004, 18: 1800-1805
    [137] Goberdhan D. C. , Wilson C. PTEN: Tumour suppressor, multifunctional growth regulator and more. Hum. Mol. Genet., 2003, 12: R239-R248
    [138] Mihaylova V. T., Borland C. Z., Manjarrez L., et al. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc. Natl. Acad. Sci. USA, 1999, 96: 7427-7432
    [139] Ali I. U. , Schriml L. M. , Dean M. Mutational spectra of PTEN/MMAC1 gene: A tumor suppressor with lipid phosphatase activity. J. Natl. Cancer Inst. , 1999, 91: 1922-1932
    [140] Soria J. C., Lee H. Y. , Lee J. I., et al. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin. Cancer Res. , 2002, 8: 1178-1184
    [141] Valiente M., Andres-Pons A., Gomar B., et al. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule -associated serine/threonine kinases. J. Biol. Chem., 2005, 280: 28936 -28943
    [142] Iwasaki H. , Murata Y. , Kim Y. , et al. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4, 5-bisphosphate. Proc. Natl. Acad. Sci. USA, 2008, 105: 7970-7975
    [143] Sun H. , Lesche R. , Li D. M. , et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3, 4, 5, -trisphosphate and Akt/protein kinase B signaling pathway. Proc. Natl. Acad. Sci. USA, 1999, 96: 6199-6204
    [144] Tamura M. , Gu J. , Danen E. H. , et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem., 1999, 274: 20693-20703
    [145] Myers M. P., Pass I. , Batty I. H., et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl. Acad. Sci. USA, 1998, 95: 13513-13518
    [146] Tamura M. , Gu J. , Takino T. , et al. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: Differential involvement of focal adhesion kinase and p130~(Cas). Cancer Res., 1999, 59: 442-449
    [147] Lee S. R. , Yang K. S. , Kwon J. , et al. Reversible inactivation of the tumor suppressor PTEN by H_2O_2. J. Biol. Chem., 2002, 277: 20336-20342
    [148] Weng L. P. , Brown J. L. , Eng C. PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and -independent pathways. Hum. Mol. Genet., 2001, 10: 237-242
    [149] Gu J. , Tamura M. , Yamada K. M. Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J. Cell Biol., 1998, 143: 1375-1383
    [150] Zhu X. , Kwon C. H. , Schlosshauer P. W. , et al. PTEN induces G1 cell cycle arrest and decreases cyclin D3 levels in endometrial carcinoma cells. Cancer Res. 2001,61:4569-4575
    [151] Goberdhan D. C., Paricio N., Goodman E. C. , et al. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the chico/PI3-kinase signaling pathway. Genes Dev. 1999, 13: 3244-3258
    [152] Lu Y. , Yu Q. , Liu J. H. , et al. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J. Biol. Chem., 2003, 278: 40057-40066
    [153] Moody J. L. , Xu L. , Helgason C. D. , et al. Anemia, thrombocytopenia, leukocytosis, extramedullary hematopoiesis, and impaired progenitor function in Pten~(+/-)SHIP~(-/-) mice: A novel model of myelodysplasia. Blood, 2004, 103: 4503-4510
    [154] Lu H. , Shah P. , Ennis D. , et al. The differentiation of skeletal muscle cells involves a protein-tyrosine phosphatase-a-mediated C-Src signaling pathway. J. Biol. Chem., 2002, 277: 46687-46695
    [155] Hodgkin A. L. and Huxley A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., 1952, 116: 449-472
    [156] Hamill O. P. , Marty A. , Neher E. , et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane Patches. Pflfigers Arch., 1981, 391: 85-100
    [157] Olson K. R. , McIntosh J. R. , Olmsted J. B. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol. , 1995, 130: 639-650
    [158] Yarbrough D., Wachter R. M., Kallio K., et al. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2. 0-A resolution. Proc. Natl. Acad. Sci. USA, 2001, 98: 462-467
    [159] Greenbaum L. , Schwartz D. , Malik Z. Spectrally besolved microscopy of GFP trafficking. J. Histochem. Cytochem., 2002, 50: 1205-1212
    [160] Southern W. E. Orientation of gull chicks exposed to project Sanguine's electromagnetic field. Science, 1975, 189: 143-145
    [161] O'Connor B. Confocal laser scanning microscopy: A new technique for investigating and illustrating fossil Radiolaria. Micropaleontology, 1996, 42: 395-401
    [162] Antonini J. M. , Charron T. G. , Roberts J. R. , et al. Application of laser scanning confocal microscopy in the analysis of particle-induced pulmonary fibrosis. Toxicol. Sci. ,1999, 51: 126-134
    [163] Wiesner B. , Roloff B. , Fechner K. , et al. Intracellular calcium measurements of single human skin cells after stimulation with corticotropin-releasing factor and urocortin using confocal laser scanning microscopy. J. Cell Sci. , 2003, 116: 1261-1268
    [164] Takahashi A. , Camacho P. , Lechleiter J. D. , et al. Measurement of intracellular calcium. Physiol. Rev., 1999, 79: 1089-1125
    [165] Resnik E. , Herron J. , Fu R. , et al. Oxygen tension modulates the expression of pulmonary vascular BK_(Ca) channels a- and P-subunits. Am. J. Physiol. Lung Cell Mol. Physiol., 2006, 290: L761-L768
    [166] Barlow R. S. , White R. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BK_(Ca) channel activity, Am. J. Physiol. Heart Circ. Physiol., 1998, 275 : 1283-1289
    [167] Krishnamoorthy G. , Shi J. , Sept D. , et al. The NH2 terminus of RCK1 domain regulates Ca~(2+)-dependent BK_(Ca) channel gating. J. Gen. Physiol. , 2005, 126: 227-241
    [168] Meera P. , Wallner M. , Song M. , et al. Large conductance voltage- and calcium-dependent K~+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl. Acad. Sci. USA, 1997, 94: 14066-14071
    [169] Sheng J. , Weljie A. , Sy L. , et al. Homology Modeling identifies C-terminal residues that contribute to the Ca~(2+) sensitivity of a BK_(Ca) channel. Biophys. J., 2005, 89: 3079-3092
    [170] Zhang G. and Horrigan F. T. Cysteine modification alters voltage- and Ca~(2+)-dependent gating of large conductance (BK) potassium channels. J. Gen. Physiol. ,2005, 125:213-236
    
    [171] Jackson W. F. Ion channels and vascular tone. Hypertension, 2000, 35: 173-178
    [172] Soto M. A, Gonzalez C. , Lissi E. , et al. Ca~(2+)-activated K~+ channel inhibition by reactive oxygen species. Am. J. Physiol. Cell Physiol., 2002, 282: 461-471
    [173] Wang Z. , Nara M. , Wang Y. , et al. Redox regulation of large conductance Ca~(2+)-activated K~+ channels in smooth muscle cells. J. Gen. Physiol. , 1997, 110: 35-44
    [174] Lin Y. F. , Raab-Graham K. , Jan Y. N. , et al. NO stimulation of ATP-sensitive potassium channel: Involvement of Ras/mitogen activated protein kinase pathway and contribution to neuroprotection. Proc. Natl. Acad. Sci. USA, 2004, 101, 7799-7804
    [175] Sun X. , Ding J. , Li H. , et al. Activation of large-conductance calcium-activated potassium channels by puerarin: The underlying mechanism of puerarin-mediated vasodilation. J. Pharmaco. Exp. Ther., 2007, 323: 391-397
    [176] Lu T., He T. R. , Katusic Z. S. , et al. Molecular mechanisms mediating inhibition of human large conductance Ca~(2+)-activated K~+channels by high glucose. Circ. Res. , 2006, 99: 607-616
    [177] Pantopoulos K. , Mueller S. , Atzberger A. , et al. Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J. Biol. Chem. , 1997, 272: 9802-9808
    [178] Schroder E. and Eaton P. Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: Issues and considerations. Curr. Opin. Pharmaco., 2008, 8: 153-159
    [179] Carod-Artal J. , Egido J. A. , Gonzalez J. L. , et al. Quality of life among stroke survivors evaluated 1 year after stroke experience of a stroke unit. Stroke, 2000, 31: 2995-3000
    [180] Haffner S. M. , Lehto S. , Ronnemaa T. , et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med., 1998, 339: 229-234
    [181] Rosenfeld C. R. , Word R. A. , De Spain K. , et al. Large conductance Ca~(2+) activated K~+ channels contribute to vascular function in nonpregnant human uterine arteries. Reprod. Sci., 2008, 15: 651-660
    [182] Poulsen A. N. , Wulf H. , Hay-Schmidt A. , et al. Differential expression of BK channel isoforms and β-subunits in rat neuro-vascular tissues, Biochim. Biophys. Acta, 2009, 1788:380-389
    [183] Petkov G. V. , Bonev A. D. , Heppner, T. J. et al. β1-Subunit of the Ca~(2+)-activated K~+ channel regulates contractile activity of mouse urinary bladder smooth muscle. J. Physiol., 2001, 537: 443-452
    [184] Semenov I. , Wang B. , Herlihy J. T. , et al. BK channel β1-subunit regulation of calcium handling and constriction in tracheal smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol., 2006, 291: L802-L810
    [185] Favero T. G., Zable A. C. , Abramson J. J. Hydrogen peroxide stimulates the Ca~(2+) release channel from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. , 1995, 270: 25557-25563
    [186] Iida Y. and Katusic Z. S. Mechanisms of cerebral arterial relaxations to hydrogen peroxide. Stroke, 2000, 31: 2224-2230
    [187] Sobey C. G. , Heistad D. D. , Faraci F. M. Mechanisms of bradykinin-induced cerebral vasodilatation in rats evidence that reactive oxygen species activate K~+ channels. Stroke, 1997, 28: 2290-2295
    [188] Dong D. L. , Yue P. , Yang B. F. , et al. Hydrogen peroxide stimulates the Ca~(2+)-activated big-conductance K channels (BK) through cGMP signaling pathway in cultured human endothelial cells. Cell Physiol. Biochem., 2008, 22: 119-126
    [189] Ma X. , Made A. C. Z. , Autar B. , et al. Targeted biallelic inactivation of pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Res., 2005, 65: 5730-5739
    [190] White E. S. , Atrasz R. G. , Hu B. , et al. Negative regulation of myofibroblast differentiation by PTEN (phosphatase and tensin homolog deleted on chromosome 10). Am. J. Respir. Crit. Care Med., 2006, 173: 112-121
    [191] Song P. , Wu Y. , Xu J., et al. Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase tensin homologue deleted on chromosome 10) in an LKB1-dependent manner . Circulation, 2007, 116: 1585-1595
    [192] Yang X. , Xu P. , Xu T. A new pair for inter- and intra-molecular FRET measurement. Biochem. Biophys. Res. Commun., 2005, 330: 914-920
    [193] Campbell R. E. , Tour O. , Palmer A. E. , et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA, 2002, 99: 7877-7882
    [194] Baukrowitz T. , Schulte U., Oliver D. , et al. PIP2 and PIP as determinants for ATP inhibition of K_(ATP) channels.Science,1998,282:1141-1144
    [195]Vaithianathan T.,Bukiya A.,Liu J.,et al.Direct regulation of BK channels by phosphatidylinositol 4,5-bisphosphate as a novel signaling pathway.J.Gen.Physiol.,2008,132:I3-28
    [196]Kim K.Y.,Lee J.H.,Park J.H.Anti-apoptotic action of(2S,3S,4R) -N″-cyano -N-(6-amino-3,4-dihydro-3-hydroxy-2-methyl-2-dimethoxymethyl-2H-benzopyran -4-yl) -N′-benzylguanidine(KR-31378) by suppression of the phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and increased phosphorylation of casein kinase2/Akt/ cyclic AMP response element binding protein via maxi-K channel opening in neuronal cells.Euro.J.Pharmaco.,2004,497:267-277
    [197]Nara M.,Dhulipala P.D.,Wang Y.X.,et al.Reconstitution of β-adrenergic modulation of large conductance,calcium-activated potassium(Maxi-K) channels in Xenopus oocytes.J.Biol.Chem.,1998,273:14920-14924
    [198]Stojanovic A.,Marjanovic J.A.,Brovkovych V.M.,et al.A phosphoinositide 3-kinase- AKT-nitric oxide-cGMP signaling pathway in stimulating platelet secretion and aggregation.J.Biol.Chem.,2006,281:16333-16339
    [199]Qin S.,Stadtman E.R.and Chock P.B.Regulation of oxidative stress-induced calcium release by phosphatidylinositol 3-kinase and Bruton's tyrosine kinase in B cells.Proc.Natl.Acad.Sci.USA,2000,97:7118 -7123
    [200]Perez G.J.,Bonev A.D.and Nelson M.T.Micromolar Ca~(2+) from sparks activates Ca~(2+)-sensitive K~+ channels in rat cerebral artery smooth muscle.Am.J.Physiol.Cell Physiol.,2001,281:1769-1775
    [201]Yu C.X.,Li S.,Whorton A.R.Redox regulation of PTEN by S-nitrosothiols,Mol.Pharmacol.,2005,68:847-854
    [202]Schmandke A.,Schmandke A.,Strittmatter S.M.ROCK and Rho:Biochemistry and neuronal functions of Rho-associated protein kinases.Neuroscientist,2007,13:454-469
    [203]Weinmeister P.,Lukowski R.,Linder S.,et al.Cyclic guanosine monophosphatedependent protein kinase Ⅰ promotes adhesion of primary vascular smooth muscle cells.Mol.Biol.Cell,2008,19:4434-4441
    [204] Widmer H. A., Rowe I. C. and Shipston M. J. Conditional protein phosphorylation regulates BK channel activity in rat cerebellar Purkinje neurons. J. Physiol. , 2003, 552: 379-391
    [205] White R. E. , Kryman J. P. , El-Mowafy A. M. , et al. cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BK_(Ca) channel activity in coronary artery smooth muscle cells, Circ. Res., 2000, 86: 897 - 905
    [206] Denson D. D. , Wang X. , Worrell R. T. , et al. Cytosolic phospholipase A_2 is required for optimal ATP activation of BK channels in GH_3 cells. J. Biol. Chem. , 2001,276:7136-7142
    [207] Ling S. , Sheng J. Z. and Braun A. P. The calcium-dependent activity of large-conductance, calcium-activated K~+ channels is enhanced by Pyk2- and Hck-induced tyrosine phosphorylation. Am. J. Physiol. Cell Physiol. , 2004, 287: 698-706
    [208] Wang J., Zhou Y., Wen H., et al. Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J. Neurosci., 1999, 19: 1-7
    [209] Myou S. , Leff A. R. , Myo S. , et al. Activation of group IV cytosolic phospholipase A_2 in human eosinophils by phosphoinositide 3-kinase through a mitogen-activated protein kinase-independent pathway. J. Immunol. , 2003, 171: 4399-4405
    [210] Myers M. P. , Stolarov J. P. , Eng C. , et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl. Acad. Sci. USA, 1997,94:9052-9057
    [211] Ramaswamy S. , Nakamura N. , Vazquez F. , et al. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. USA, 1999, 96: 2110-2115
    [212] Tamura M. , Gu J. , Tran H. et al. PTEN gene and integrin signaling in cancer. J. Natl. Cancer Inst., 1999, 91: 1820-1828
    [213] Huo Y. Y. , Li G. , Duan R. F. , et al. PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts. Free Radic. Biol. Med., 2008, 44: 1578-1591
    [214] Prakriya M. , Solaro C. R. , and Lingle C. J. [Ca~(2+)]i Elevations detected by BK channels during Ca~(2+) influx and muscarine-mediated release of Ca~(2+) from intracellular stores in rat chromaffin cells. J. Neurosci., 1996, 16: 4344-4350
    [215] Qian X. , Niu X. and Magleby K. L. Intra- and intersubunit cooperativity in activation of BK channels by Ca~(2+). J. Gen. Physiol., 2006, 128: 389-404
    [216] Hu Q. , Corda S. , Zweier J. L. , et al. Hydrogen peroxide induces intracellular calcium oscillations in human aorticendothelial cells. Circulation, 1998, 97: 268-275
    [217] Lee S. Y. , Choi B. H. , Hur E. M. , et al. Norepinephrine activates store-operated Ca~(2+) entry coupled to large-conductance Ca~(2+)-activated K~+ channels in rat pinealocytes. Am. J. Physiol. Cell Physiol. , 2006, 290: 1060-1066