NQO1C_(609T),RAD51_(G135C)和XRCC3_(C241T)单核苷酸多态性与急性淋巴细胞白血病发病相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的探索NQ01_(C609T),RAD51_(G135C)和XRCC3_(C241T)单核苷酸多态性与急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)发生的关系。
     研究方法170例ALL患者和458名与患者无血缘关系的正常人对照,用聚合酶链反应-限制性内切酶片断长度多态性(Polymerase chainreaction-restriction fragment length polymorphism,PCR-RFLP)
     方法分析NQ01_(C609T),RAD51_(G135C)和XRCC3_(C241T)基因型。
     结果在单基因水平,NQ01_(C609T),RAD51_(G135C)和XRCC3_(C241T)基因型比例在正常对照和ALL患者之间无统计学差异,提示其单独作用时对ALL发病无统计学影响。当三基因联合分析时,NQ01_(C609T)和RAD51_(G135C)均为变异型时增加伴髓系抗原阳性的ALL和伴平衡易位ALL的发病风险(OR值分别为5.553和2.618);NQ01_(C609T)纯合变异型增加儿童农村ALL的发病风险(OR值为2.541)。
     结论NQ01_(C609T)、RAD51_(G135C)和XRCC3_(C241T)基因型联合作用可能促进ALL的发病,提示多基因联合分析较单基因可能对ALL的发病更有预测意义。
Objective To investigate the effects of NQ01_(C609T),RAD51_(G135C)and XRCC3_(C241T) genotypes on the acute lymphoblastic leukemia(ALL) susceptibility.
     Methods NQ01_(C609T),RAD51_(G135C),XRCC3_(C241T) genotypes were detected in 170 patients with de novo ALL and 458 controls by PCR-RFLP.
     Results Polymorphisms in NQ01_(C609T),RAD51_(G135C) and XRCC3_(C241T)genes did not seem to play an important role in the aetiology of ALL independently.To assess gene-gene interactions,NQ01_(C609T) was considered together with RAD51_(G135C) and XRCC3_(C241T) genes.The combined presence of both variant NQ01_(C609T) and RAD51_(G135C) alleles appeared to confer an increased risk of acute lymphoblastic leukemia with myeloid antigen and ALL with translocations among the carriers(OR=5.553 and 2.618 respectively),The presence of homozygosity for NQ01_(C609T) appeared to confer an increased risk of ALL in the country-children(OR=2.541).
     Conclusion The combination of might contribute to the leukemogenesis of ALL,and the combination of susceptibility variants is more predictive of the risk for ALL than either of them independently.
引文
1. Bolufer P, Collado M, Barragan E, Cervera J,et al. The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica, 2007, 92:308-314.
    2. Eguchi-IM, Eguchi M, Ishii E,et al.The association of a distinctive allele of NAD(P)H:quinone oxidoreductase with pediatric acute lymphoblastic leukemias with MLL fusion genes in Japan. Haematologica, 2005, 90:1511-1515.
    3. Lanciotti M, Dufour C, Corral L,et al. Genetic polymorphism of NAD(P)H:quinone oxidoreductase is associated with an increased risk of infant acute lymphoblastic leukemia without MLL gene rearrangements.Leukemia, 2005, 19:214-216.
    4. Kracht T, Schrappe M, Strehl S,et al.NQO1 C609T polymorphism in distinct entities of pediatric hematologic neoplasms. Haematologica, 2004, 89:1492-1497.
    5. Smith MT, Skibola CF, Allan JM, et al. Causal models of leukaemia and lymphoma.IARC Sci Publ, 2004, 157:373-92.
    6. Smith MT, Wang Y, Skibola CF,et al. Low NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children. Blood, 2002, 100:4590-4593.
    7. Hoffman R, Benz E , Shattil S,et al. Hematology: Basic Principles and Practice, 4rd ed Elsevier,2004.
    8. Lewin B.Genes VIII, Pearson Prentice Hall, 2004.
    9. Mistry AR, Felix CA, Whitmarsh RJ,et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia.N Engl J Med, 2005,352(15):1529-1538.
    10. Zhang Y, Strissel P, Strick R, et al. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavageand DNase I hypersensitive sites in t(8;21) leukaemia.Proc Natl Acad Sci U S A.2002,99:3070-3075.
    11.Delacote F,Han M,Stamato TD,et al.An XRCC4 defect or Wortmannin stimulates homologous recombination specifically induced by double -srand breaks in mammalian cells.Nucleic Acids Res,2002,30:3454-3463.
    12.Price PR,Emond MJ,Monnat RJ,et al.Loss of Werner syndrome protein function promotes aberrant mitotic recombination.gens Dev,2001,15:933-938.
    13.Adachi,N,Ishii Y,Takeda S,et al.DNA ligase iv-deficient cells are more resistant to ionizing radiation in the absence of Ku70:implications for DNA double-strand break repair.Proc Natl Acad Sci USA,2001,98:12109-12113).
    14.Kawabata M,Kawabata T,Nishibori M.Role of recA/RAD51 family proteins in mammals.Acta Med Okayama,2005,59:1-9.
    15.Sung P,Krejci L,Komen SV,e.t al.Rad51 Recombinase and Recombination Mediators.J Biol Chem,2003,278:42729-42732.
    16.Kurumizaka H,Enomoto R,Nakada M,et al.Region and amino acid residues required for Rad51C binding in the human Xrcc3 protein.Nucleic Acids Res,2003,31:4041-4050.
    17.肖志坚,郝玉书.白血病的诊断与分型.中华内科杂志,2001,40:325-327.
    18.Van Dongen JJM,Macintyre EA,Gabert JA,et al.Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease.Leukemia,1999,13:1901-1928.
    19.马秋兰,杨静芳,邵明等.阿尔茨海默病与NQO1和载脂蛋白E 基因多态性关联分析.中华医学杂志,2003,83(24):2124-2127。
    20.Seedhouse C,Faulkner R,Ashraf N,et al.Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia.Clinic Cancer Res,2004,10:2675-2680.
    21.Seedhouse C,Bainton R,Lewis M,et al.The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia.Blood,2002,100:3761-3766.
    22.Tarsounas M,Davies AA,West SC.RAD51 localization and activation following DNA damage.Philos Trans R Soc Lond B Biol Sci,2004,359:87-93.
    23.卞寿庚.急性髓系白血病//张之南,沈悌.血液病诊断及疗效标准.3版.北京:科学出版社,106-115.
    24.Lieber MR.,Ma Ym,Pannicke U,et al.Mechanism and regulation of human non-homologous DNA end-joining.Nature Reviews Molecular Cell Biology,2003,4:712-720.
    1.肖志坚.治疗相关急性髓系白血病.//郝玉书,王建祥,肖志坚,等.白细胞疾病基础理论和临床.上海:上海科学技术出版,2006,481-489.
    2.肖志坚.继发性白血病病因学研究现状.白血病·淋巴瘤,2001,10(2):119-123.
    3.张红宾,张翼军.治疗相关性白血病的研究概况.重庆医学,2004,33:1050-1051.
    4.王永涛,俞康.NQO1酶及其多态性与苯的血液毒性.医学综述,2005,11:417-419.
    5.Rothman N,Smith M T,Hayes R B,et al.Benzene poisoning,a risk factor for hematological malignancy,is associated with the NQO1609C→T mutation and rapid fractional excretion of chlorzoxazone.Cancer Res,1997,57:2839-2842.
    6.Bolufer P,Collado M,Barragan E,et al.Profile of polymorphisms of drug-metabolising enzymes and.the risk of therapy-related leukaemia.Br J Haematol,2007,136:590-596.
    7. Larson RA, Wang Y, Banerjee M, et al. Prevalence of the inactivating 609C-->T polymorphism in the NAD (P) H: quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia.Blood, 1999, 94:803-807.
    8. Naoe T, Takeyama K, Yokozawa·T, et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/ myelodysplastic syndrome and de novo acute myeloid leukemia.Clin Cancer Res, 2000, 6:4091-4095.
    9. Seedhouse C, Bainton R, Lewis M, et al. The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia.Blood, 2002, 100:3761-3766.
    10. Gale RE, Bunch C, Moir DJ, et al. Demonstration of developing myelodysplasia/acute myeloid leukaemia in haematologically normal patients after high-dose chemotherapy and autologous bone marrow transplantation using X-chromosome inactivation patterns.Br J Haematol, 1996,93:53-58.
    11.Legare RD, Gribben JG, Maragh M, et al. Prediction of therapy-related acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS) after autologous bone marrow transplant (ABMT) for lymphoma.Am J Hematol,1997 ,56:45-51.
    12. Fern L, Pallis M, Ian Carter G, , et al. Clonal haemopoiesis may occur after conventional chemotherapy and is associated with accelerated. telomere shortening and defects in the NQO1 pathway; possible mechanisms leading to an increased risk of t-AML/MDS. Br J Haematol, 2004, 126:63-71.
    13. Stansel RM, Subramanian D, Griffith JD. p53 binds telomeric single strand overhangs and t-loop junctions in vitro. J Biol Chem, 2002, 277:11625-11628.
    14.Anwar A,Dehn D,Siegel D,et al.Interaction of human NAD(P) H:quinone oxidoreductase 1(NQO1) with the tumor suppressor protein p53 in cells and cell-free systems.J Biol Chem,2003,278:10368-73.
    15.Asher G,Lolem J,Tsvetkov P,et al.P53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P) H:quinone oxidoreductase 1.Proc Natl Acad Sci U S A.2003,100:15065-5070.
    16.Geiger H,True JM,de Haan G,et al.Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy.Blood,2001,98:2966-2972.
    17.Kennedy MA,Rayner JC,Morris CM.Genomic structure,promoter sequence,and revised translation of human homeobox gene HLX1.Genomics,1994,22:348-355.
    18.Jawad M,Seedhouse CH,Russell N,,et al.Polymorphisms in human homeobox HLX1 and DNA repair RAD51 genes increase the risk of therapy-related acute myeloid leukemia.Blood,2006,108:3916-3918.
    19.Worrillow L J,Travis LB,Smith AG,,et al.An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents.Clin Cancer Res,2003,9:3012-3020.
    20.李鸣川,周宝森.XRCC1基因多态性与肺癌易感性关系的研究进展.肿瘤防治杂志,2004,11:425-428.
    21.Whitehouse C J.Taylor R M.Tfiistlethwaite A,et al.XRCC1stimulates human poIynucIe0tide kinase activity at damaged DNA termini and accelerates DNA single strand break repair.Cell,2001,104:107-117.
    22.VidaI A E,Boiteux S,Hickson I D.et al.XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein protein interactions. EMBO J, 2001, 20: 6530-6539.
    23. Duell EJ, Millikan RC, Pittman GS, et al. Polymorphisms in the DNA repair gene XRCC1 and breast cancer. Cancer Epidemiol Biomarkers Prev, 2001,10:217-222.
    24. Divine KK, Gilliland FD, Crowell RE, et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat Res, 2001, 461:273-278.
    25. Lewin B.Genes VIII, Pearson Prentice Hall, 2004.
    26. Mistry AR, Felix CA, Whitmarsh RJ,et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med, 2005, 352:1529-1538.
    27. Zhang Y, Strissel P, Strick R, et al. Genomic DNA breakpoints in AML1/RUNX1 And ETO cluster with topoisomerase II DNA cleavageand DNase I hypersensitive sites in t(8;21) leukaemia. Proc Natl Acad Sci U S A.2002, 99:3070-3075.
    28. Brady N, Gaymes TJ, Cheung M, et al. Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins.Cancer Res, 2003, 63:1798-1805.
    29. Delacote F,Han M,Stamato TD,et al.An XRCC4 defect or Wortmannin stimulates homologous recombination specifically induced by double -srand breaks in mammalian cells. Nucleic Acids Res, 2002, 30:3454-3463.
    30. Price PR,Emond MJ,Monnat RJ,et al.Loss of Werner syndrome protein function promotes aberrant mitotic recombination.gens Dev, 2001, 15:933-938.
    31. Adachi, N,Ishii Y,Takeda S,et al. DNA ligase iv-deficient cells are more resistant to ionizing radiation in the absence of Ku70: implications for DNA double-strand break repair.Proc Natl Acad Sci USA, 2001, 98:12109-12113).
    32. Richardson· C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature, 2000, 405:697-700.
    33. Fu YP, Yu JC, Cheng TC , et al. Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: a multigenic study on cancer susceptibility.Cancer Res,2003,63:2440-2446.
    34. Coiteux V, Onclercq-Delic R, Fenaux P , et al. Predisposition to therapy-related acute leukemia with balanced chromosomal translocations does not result from a major constitutive defect in DNA double-strand break end joining. Leuk Res, 2007 ,31:353-358.
    35. Seedhouse C, Faulkner R, Ashraf N , et al. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia.Clin Cancer Res, 2004 ,10:2675-2680.
    36. 金问森,金一尊. Rad5 1的异常表达与肿瘤治疗. 国际肿瘤学杂志,2006,33:721-724.
    37. Raderschall E, Bazarov A, Cao J, et al. Formation of higher order nuclear Rad51 structures is functionally linked to p21 expression andprotection from DNA damage—induced apoptosis. J Cell Sci, 2002, 115: 153-164.
    
    38. Margolis RL , Lohez OD , Andreassen PR . G1 tetraploidy checkpointand the suppression of tumorigenesis. J Cell Biochem, 2003, 88: 673—683.
    39. Kurumizaka H, Enomoto R, Nakada M, ,et al. Region and amino acid residues required for Rad51C binding in the human Xrcc3 protein. Nucleic Acids Res, 2003, 31:4041-4050.
    40. Seedhouse C, Bainton R, Lewis M ,.et al. The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood,2002,100:3761-3766.
    1.Latagliata R,Bongarzoni V,Alimena G,et al.Acute myelogenous leukemia in elderly patients not eligible for intensive chemotherapy:the dark side of the moon[J].Ann Oncol,2006;17(2):281-285.
    2.Burnett AK,Milligan D,Prentice AG,et al.low dose Ara-C with or without retinoid in older patients not considered fit for intensive chemotherapy:The UK NCRI AML14trial[J].Blood,2004,104:249a(abstr)
    3.Lowenberg B,Suciu S,Zittoun R,et al Mitoxantrone versus daunorubicin in induction-consolidation chemotherapy—the value of low-dose cytarabine for maintenance of remission,and an assessment of prognostic factors in acute myeloid leukemia in the elderly:final report.European Organization for the Research and Treatment of Cancer and the Dutch-Belgian Hemato-Oncology Cooperative Hovon Group [J].J Clin Oncol,1998,16(3):872-881.
    4.Rowe J,Neuberg D,Friedenberg W,et al.A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group[J]. Blood, 2004, 103 (2) :479-485.
    5. Sperr WR, Piribauer M, Valent P, et al A novel effective and safe consolidation for patients over 60 years with acute myeloid leukemia: intermediate dose cytarabine (2 x 1 g/m2 on days 1, 3, and 5) [J]. Clin Cancer Res, 2004, 15;10(12 Pt 1):3965-3971.
    6. Farag SS, Archer KJ, Bloomfield CD, et al Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461[J]. Blood, 2006, 108 (1) :63-73.
    
    7. Tilly H, Castaigne S and Bordessoule D , et al Low-dose cytarabine versus intensive chemotherapy in the treatment of acute nonlymphocytic leukemia in the elderly[J]. J Clin Oncol, 1990, 8(2) : 272- 279.
    
    8. Ferrero D, Campa E, Boccadoro M, et al Differentiating agents + low-dose chemotherapy in the remanagement of old/poor prognosis patients with acute myeloid leukemia or myelodysplastic syndrome[J]. Haematologica , 2004 , 89 (5) :619-620.
    
    9. Estey EH. General approach to, and perspectives on clinical research in, older patients with newly diagnosed actute myeloid leukemia[J]. Semin Hematol, 2006, 43 (2) :89-95.
    
    
    10.Goldstone AH, Burnett AK, Clark RE, et al. Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial [J]. Blood,2001 , 98 (5) :1302-1311.
    11. Anderson J, Kopecky K,Willmann C, et al. Outcome after induction chemotherapy for older patients with acute myeloid leukemia is not improved with mitoxantrone and etoposide compared to cytarabine and daunorubicin:a Southwest Oncology Group study[J]. Blood, 2002, 100 (12) : 3869-3876.
    12. BurnettAK, Mohite U. Treatment of older patients with acute myeloid leukemia-New agents [J]. Semin Hematol, 2006, 43 (2) :96-106.
    13. Pulsoni A, Pagano L, Latagliata R, et al. Survival of elderly patients with acute myeloid leukemia[J]. Haematologica, 2004, 89 (3) :296-302.
    14. Abou-Jawde RM, Sobecks R, Kalaycio M, et al. The role of post-remission chemotherapy for older patients with acute myelogenous leukemia [J]. Leuk Lymphoma, 2006, 47 (4) :689-695.
    15. Sanderson RN , Johnson PRE, Moorman AV, et al. Population-based demographic study of karyotypes in 1709 patients with adult acute myeloid leukemi'a[J]. Leukemia, 2006, 20 (3) :444-450.
    16. Buchner T, Hiddemann W, Heinecke A, et al. 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group[J]. J Clin Oncol, 2003, 21 (24) :4496-4504.
    17. Jehn U, Sueiu S, Amadori S, et al. Non-infusional vs intravenous consolidation chemotherapy in elderly patients with acute myeloid leukemia: final results of the EORTC-GIMEMA AML-13 randomized phase IIItrial[J]. Leukemia, 2006, 20 (10) :1723-1730.
    18. Stone RM, ·Berg DT, George SL, et al. Postremission therapy in older patients with de novo acute myeloid leukemia: a randomized trial comparing mitoxantrone and intermediate-dose cytarabine with standard-dose cytarabine [J]. Blood, 2001, 98 (3) : 548-553.
    19. Farag SS, George SL, Caligiuri MA, et al. Postremission therapy with low-dose interleukin 2 with or without intermediate pulse dose interleukin 2 therapy is well tolerated in elderly patients with acute myeloid leukemia: Cancer and Leukemia Group B study 9420[J]. Clin Cancer Res,. 2002, 8 (9) :2812-2819.
    20. Rowe J, Neuberg D, Friedenberg W,et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group [J]. Blood, 2004, 103 (2) : 479 - 485.
    21. Lowenberg B, Suciu S Archimbaud E, et al. Use of recombinant granulocyte - macrophage colony-stimulating factor during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia (AML): final report of AML-11, a phase III randomized study of the Leukemia Cooperative Group of European Organisation for the Research and Treatment of Cancer (EORTC-LCG) and the Dutch Belgian Hemato-Oncology Cooperative Group (HOVON) [J]. Blood, 1997, 90(8) :2952 - 2961.
    22.Büchner T, Berdel W. E, Hiddemann W. Priming with granulocyte colony-stim. ulating factor: relation to high-dose cytarabine in acute myeloid leukemia [J]. N Engl J Med, 2004, 350 (21) : 2215 - 2216.
    23. Dombret H, Chastang C Fenaux P, et al. A controlled study of recombinant human granulocyte colony-stimulating factor in elderly patients after treatment for acute myelogenous leukemia [J]. N Engl J Med, 1995, 332 (25) :1678 - 1683.
    24. Estey EH, Thall P, Pierce S, et al. Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin +/-all-trans retinoic acid +/- granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome[J]. Blood, 1999, 93(8) : 2478 - 2484.
    25. Lowenberg B, van Putten W, Theobald M, et al. For the Dutch - Belgian Hemato-Oncology. Cooperative Group and the Swiss Group for Clinical Cancer Research. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia [J]. N Engl J Med,2003, 349(8) : 743 - 752.
    
    26. Schlenk RF, Fro¨hling F, Hartmann F, et al. Phase III study of all-trans etinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia [J]. Leukemia,2004, 18(11) : 1798 - 1803.
    
    27. Appelbaum FR, Gundacker H, Petersdorf SH, et al Age and acute myeloid leukemia [J]. Blood, 2006, 107(9):3481-3485.
    28. Frohling S., Schlenk RF, Dohner H, et al Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG. trial AML HD98-B [J]. Blood, 2006, 108(10):3280-3288.
    29. Gupta V, Chun K, Brandwein J, et al Disease biology rather than age is the most important determinant of survival of patients > or = 60 years with acute myeloid leukemia treated with uniform intensive therapy[J]. Cancer, 2005, 103(10):2082-2090.
    30. Sanderson RN, Johnson PRE, Moorman AV, et al. Population-based demogra-phic study of karyotypes in 1709 patients with adult acute myeloid leukemia[J]. Leukemia, 2006, 20(3) :444-450.
    31. Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML) : analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial [J]. Blood, 2001, 98(5): 1312-1320.
    32.Amadori S, Suciu S, Stasi R, et al. Gemtuzumab ozogamicin (Mylotarg) as single-agent treatment for frail patients 61 years of age and older with acute myeloid leukemia: final results of AML-15B, a phase 2 study of the European Organisation for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell'Adulto Leukemia Groups [J]. Leukemia, 2005, 19 (10) : 1768-1773.
    33. Estey EH, Thall PF, Giles FJ, et al. Gemtuzumab ozogamicin with or without interleukin 11 in patients 65 years of age or older with untreated acute myeloid leukemia and high-risk myelodysplastic syndrome:comparison with idarubicin plus continuous-infusion, high-dose cytosine arabinoside[J]. Blood, 2002, 99(12) :4343-4349.
    34. Leopold LH, Berger MS, Cheng SC,. et al. Comparative efficacy and safety of gemtuzumab ozogamicin monotherapy and high-dose cytarabine combination therapy in patients with acute myeloid leukemia in first relapse[J]. Clin Adv Hematol Oncol , 2003, 1(4):220-225.