COX-2基因单核苷酸多态性与头颈部鳞状细胞癌易感性的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是目前导致人类死亡的最主要的致病因素之一,头颈部鳞状细胞癌(Head and Neck Squamous Cell Carcinoma,HNSCC)泛指发生于口腔颌面部,咽喉及上呼吸消化道等部位的鳞状细胞癌,在恶性肿瘤的死亡因素中列第八位,严重威胁着人类的健康和生命。头颈部鳞状细胞癌的发病原因尚不明确,随着流行病学和分子生物学的发展,目前认为头颈部鳞状细胞癌的发生发展是外界环境与个体遗传因素共同作用的结果。遗传生物学的研究结果表明,个体遗传背景的差异往往导致了患者罹患头颈部鳞状细胞癌易感性的不同,因此,对于易感基因的鉴别可能是筛查患头颈部鳞状细胞癌高危人群和预防其发生的关键。
     环氧化酶(cyclooxygenase,COX)是一类前列腺素合成过程中重要的限速酶,COX有两个亚单位:COX-1和COX-2。COX-1在正常组织中稳定表达并且合成前列腺素以维持正常的生理功能。而COX-2在大多数组织中不表达或低表达,可被生长因子、内毒素及肿瘤促进因子诱导产生。研究已经证实COX-2在多种恶性肿瘤(包括食管癌、乳腺癌、卵巢癌、结肠癌、喉癌、胰腺癌、前列腺癌、肺癌、肝癌等)中高表达。此外,我们前期的研究发现COX-2的高表达与头颈部鳞状细胞癌( head and neck squamous cell carcinoma,HNSCC)的发生发展密切相关。
     单核苷酸多态性(single nucleotide polymorphism,SNP),是一种常见的遗传变异(genetic variation),发生在DNA编码区(coding region)的SNP,可引起所翻译蛋白质的一级结构的变异,进而可能改变蛋白质结构域的功能。如果SNP发生在DNA的非编码区(non-coding region),特别是基因上游的启动子区域(promoter region)及5’和3’端的非翻译区域(untranslated region),则可能影响该基因的转录过程,而改变mRNA的转录及表达,进而影响下游蛋白质的表达和功能,从而可能造成个体对肿瘤易感性的差异。
     本课题采用分子流行病学“病例—对照”的研究方法,运用分子生物学实验技术,进行COX-2基因遗传变异与头颈部鳞状细胞癌发生易感性的流行病学研究。
     第一部分COX-2基因单核苷酸多态性与头颈部鳞状细胞癌易感性的相关性研究
     环氧化酶2(COX-2)是前列腺素(PGs)合成过程中一个主要的限速酶,可将花生四烯酸(AA)代谢成各种前列腺素产物,从而参与机体的多种病理生理过程。COX-2过度表达能够促进细胞增殖、抑制凋亡和促进血管新生,从而导致肿瘤的形成。许多癌前病变和恶性肿瘤中均有COX-2基因的扩增及其蛋白质的高表达。
     COX-2的表达及其稳定性受基因启动子区及5’和3’非翻译区的多种转录因子调控,在这些区域内的多态性改变可能会影响基因的表达,从而改变个体对肿瘤的易感性。研究表明,在中国人群中COX-2基因启动子区-1195A>G(rs689466),-765G>C(rs20417)位点等位基因的变异可以导致发生食管癌的危险性显著性升高,1759G>A(rs3218625)位点SNP改变将导致COX-2蛋白质中587位的Gly被Arg取代,从而使COX-2催化花生四烯酸的活性增加约1.5倍;而3’端非翻译区8473T>C(rs5275)位点的SNP改变与则可能肺癌及乳腺癌等疾病的发病发生有关。
     本研究通过病例—对照研究(260例新发头颈部鳞状细胞癌患者:包括169位口腔癌患者、91位喉癌患者和1047例健康对照),探讨①COX-2启动子区域SNP变异位点:-1195A>G,-765G>C;②COX-2编码区SNP变异位点:1759G>A;③3’端非翻译区(3’UTR)SNP变异位点:8473T>C四个变异位点与头颈部鳞状细胞癌易感性的关系。采用Taqman-MGB及PCR-RFLP(Restriction Fragment Length Polymorphism,限制性片断长度多态性)技术进行基因分型,运用多因素Logistic回归,分析基因型及烟酒等危险因素与头颈部鳞状细胞癌发生风险的关系。
     结果表明:(1)-1195A>G位点SNP改变与头颈部鳞状细胞癌的发生不存在显著统计学关联,与携带野生型纯合子AA的个体相比,携带杂合子AG的个体发病风险:调整OR= 0.87(95%CI=0.63-1.20);携带变异型纯合子GG的个体发病风险:调整OR=1.02(95%CI=0.69-1.50)。(2)-765G>C位点SNP改变与头颈部鳞状细胞癌的发生没有显著的相关性,与携带野生纯合型GG的个体相比,携带杂合子GA的个体发病风险:调整OR=1.01(95%CI=0.61-1.67)。(3)1759G>A位点SNP改变未能发现与头颈部鳞状细胞癌的发生有显著的相关性,与携带野生纯合型GG的个体相比,携带杂合子GA的个体发病风险:调整OR=0.42(95%CI=0.16-1.07)。(4)8473T>C位点SNP改变与头颈部鳞状细胞癌的发生没有显著的统计学关联,与携带野生纯合型TT的个体相比,携带杂合子TC的个体发病风险:调整OR=0.90(95%CI=0.66-1.22);携带变异型纯合子CC的个体发病风险:调整OR=1.48(95%CI=0.68-3.25)。
     本研究结果提示,-1195A>G,-765G>C,1759G>A,8473T>C位点的SNP改变与中国汉族人群中头颈部鳞状细胞癌发生的易感性之间不存在显著的统计学关联。
     第二部分COX-2基因启动子区域单核苷酸多态性与启动子活性改变的功能性研究
     COX-2基因启动子区域含有与多种转录因子相互结合的位点,比如PEA3、IL6、NFKB、SP1和c-MYB等。在COX-2基因的转录过程中,这些转录因子与启动子区域密切结合。COX-2基因启动子区域SNP改变将直接影响其与特定的转录因子的结合能力,导致基因的转录能力的改变,进而引起蛋白质表达水平发生变化。
     本研究通过PCR技术扩增从-1940核苷酸到+201核苷酸的COX-2基因启动子序列,片段长度共2141bp,产物纯化后直接进行测序确认,然后利用定点突变技术获得含有-1195A>G,-765G>C位点等位基因突变的DNA片段。通过双酶切消化及连接反应与pGL3-Basic载体相结合,成功构建含有COX-2基因启动子区域-1195A>G和-765G>C SNP位点的3种含有COX-2基因启动子的报告基因质粒:pGL3-A_-1195-G_-765,pGL3-G_-1195-G_-765,pGL3-A_-1195-C_-765。通过瞬时转染Tca-8113,Hela和MG-63细胞系并结合双荧光素酶检测发现:pGL3-A-1195-G-765质粒的荧光素酶活性均显著高于pGL3-G-1195-G-765质粒(P<0.001);而pGL3-A_-1195-G_-765质粒与pGL3-A_-1195-C_-765质粒的荧光素酶活性无显著性差异。
     本研究结果表明,-1195A→G的SNP改变可导致启动子区域转录活性的改变,降低启动子的转录活性;而-765G→C的SNP改变未能导致启动子区域转录活性的变化。
Head and neck squamous cell carcinoma (HNSCC) cancer is one of the most frequent malignant tumors in the world. In recent years, it shows a significantly increasing trend in the last two decades. However, the exact molecular mechanisms to develop head and neck squamous cell carcinoma are still unclear. It is well accepted that interaction of environmental factors and genetic factors may contribute to the etiology of head and neck squamous cell carcinoma. The individuals with different genetic background have different risk of head and neck squamous cell carcinoma. So, it is important to find the head and neck squamous cell carcinoma susceptibility genes in a high-risk population.
     Overexpressing of cyclooxygenase-2(COX-2) has been implicated in the development of many type of human cancer. Single nucleotide polymorphism (SNP) in the COX-2 gene might contribute to diffenertial COX-2 expressiong and enzymatic activity. The SNP located in the non-coding region, especially in promoter region or 3’untranslated region(3’UTR) of COX-2 may affect the biological functions of COX-2 and risk of developing head and neck squamous cell carcinoma. Thus, we conducted a case-control study to investigate the association of COX-2 genes polymorphisms with head and neck squamous cell carcinoma susceptibility in Chinese populations.
     Part I: COX-2 gene polymorphism and the susceptibility of head and neck squamous cell carcinoma
     COX-2 is the critical enzymes that convert arachidonic acid into prostaglandins and thromboxanes. COX-2 is always involved in inflammation angiogenesis, anti-apoptosis and carcinogenesis. COX-2 overexpression was found in a large proportion of tumor tissues and was significantly associated with advanced tumor stage and lymph node metastasis, such as colon, breast, gland, stomach, prostate and head and neck cancer.
     The expression of COX-2 is regulated by a complex signal transduction pathway in which many nuclear proteins interact with the COX-2 promoter region and play a decisive role in gene transcription. Therefore, single nucleotide polymorphisms (SNP) in the COX-2 promoter may have a great impact on gene transcriptional activity by altering the binding capability with certain nuclear proteins, resulting in inter-individual variability in susceptibility to cancer. In research of Chinese population, two SNP-1195A>G(rs689466), -765G>C(rs20417) in the promoter region are associated with risk of developing gastroesophageal cancer. The SNP 1759G>A(rs3218625) will induce 587Gly/Arg change had significant impact on COX-2 activity; the COX-2-Arg587 isoform showed 1.5 fold elevated enzymatic activity than the COX-2-Gly587 isoform in converting arachidonic acid into prostaglandins. The SNP 8473T>C (rs5275) in 3’UTR region are associated with risk of lung cancer.
     The aim of this case-control study including 260 head and neck squamous cell carcinoma cases and 1047 controls is to investigate the associations of the SNP -1195A>G, -765G>C in the cox-2 promoter regiong, the SNP 1759G>A in the coding region and the SNP 8473T>C in the 3’UTR regiong with head and neck squamous cell carcinoma risk in Chinese populations.We genotyped the four polymorphisms by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism) and TaqMan-MGB method. In addition, genotyping was performed blindly and 10% of the samples were randomly selected for repeated assays. Finally, a total of 259 head and neck squamous cell carcinoma cases and 1035 controls were successfully genotyped.
     In the present case-control study, the genotype of -1195AG and -1195GG, were associated with no significantly increased risk of head and neck squamous cell carcinoma (adjusted OR=0.87, 95% CI=0.63-1.20; OR=1.02, 95% CI=0.69-1.50 ); compared with the wild-type genotype; the genotype of -765GC was not associated with the risk for developing head and neck squamous cell carcinoma (adjusted OR=1.01,95% CI=0.61-1.67); compared with the wild-type genotype, the genotype of 1759GA was not a risk factor for susceptibility to head and neck squamous cell carcinoma (adjusted OR=0.42, 95% CI=0.16-1.07 ); the genotype of 8473TC and 8473CC may be not the risk factors for developing head and neck squamous cell carcinoma (adjusted OR=0.90, 95% CI=0.66-1.22; OR=1.48, 95%CI= 0.68-3.25).
     These findings suggested that the four SNP may not associate with head and neck squamous cell carcinoma risk in Chinese population.
     Part II: Functional relationgship between SNP in the COX-2 promoter regiong and the changes of promote activity
     The COX-2 promoter region has identified several key cis-acting regulatory elements to bind these transcription factors (such as PEA3, AP1. interleukin-6, nuclear factor KB, Sp1 and c-MYB), which may play a decisive role in the regulation of COX-2 transcription. The mutations within the consensus sequences of certain cis-acting elements significantly altered gene expression.
     In our research we constructed a reporter plasmid encompassing -1940 to +201 base pairs of human COX-2 promoter region. The constructs used in this study were restriction mapped and sequenced to confirm their authenticity. The PCR product was digested, site-directed mutated and ligated, respectively, into an appropriately digested pGL3-Basic vector (Promega) containing the firefly luciferase gene as a reporter. Then we transient transfected the Tca-8113, Hela and MG-63 cells with these re-construct plasmids .Accroding to the Luciferase Assays, we found -1195A-containing COX2 promoters were higher than those driven by the -1195G-containing counterparts(P<0.001). No significant effect of the -765G>C polymorphism on the promoter activity was observed under our experimental conditions. These results suggest that the -1195G>A SNP can influences COX-2 promoter activity, but the -765G/C containing haplotypes no associated with the promoter activity .
引文
1. Ragin CC, Modugno F, Gollin SM. The epidemiology and risk factors of head and neck cancer: a focus on human papillomavirus. J Dent Res 2007;86:104-114
    2. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 60:277-300
    3. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108
    4. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90
    5. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-130
    6. Kademani D. Oral cancer. Mayo Clin Proc 2007;82:878-887
    7. Sturgis EM, Wei Q, Spitz MR. Descriptive epidemiology and risk factors for head and neck cancer. Semin Oncol 2004;31:726-733
    8. Ho T, Wei Q, Sturgis EM. Epidemiology of carcinogen metabolism genes and risk of squamous cell carcinoma of the head and neck. Head Neck 2007;29:682-699
    9. Gattas GJ, de Carvalho MB, Siraque MS, Curioni OA, Kohler P, Eluf-Neto J, Wunsch-Filho V. Genetic polymorphisms of CYP1A1, CYP2E1, GSTM1, and GSTT1 associated with head and neck cancer. Head Neck 2006;28:819-826
    10. Yadav BK, Kaur J, Srivastava A, Ralhan R. Effect of polymorphisms in XRCC1, CCND1 and GSTM1 and tobacco exposure as risk modifier for oral leukoplakia. Int J Biol Markers 2009;24:90-98
    11. Ruwali M, Khan AJ, Shah PP, Singh AP, Pant MC, Parmar D. Cytochrome P450 2E1 and head and neck cancer: interaction with genetic and environmental risk factors. Environ Mol Mutagen 2009;50:473-482
    12. Baez A. Genetic and environmental factors in head and neck cancer genesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2008;26:174-200
    13. Sugimura T, Kumimoto H, Tohnai I, Fukui T, Matsuo K, Tsurusako S,Mitsudo K, Ueda M, Tajima K, Ishizaki K. Gene-environment interaction involved in oral carcinogenesis: molecular epidemiological study for metabolic and DNA repair gene polymorphisms. J Oral Pathol Med 2006;35:11-18
    14. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007;18:581-592
    15. Kawamori T, Uchiya N, Sugimura T, Wakabayashi K. Enhancement of colon carcinogenesis by prostaglandin E2 administration. Carcinogenesis 2003;24:985-990
    16. Konturek PC, Kania J, Burnat G, Hahn EG, Konturek SJ. Prostaglandins as mediators of COX-2 derived carcinogenesis in gastrointestinal tract. J Physiol Pharmacol 2005;56 Suppl 5:57-73
    17. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol 2002;23:144-150
    18. Leahy KM, Ornberg RL, Wang Y, Zweifel BS, Koki AT, Masferrer JL. Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res 2002;62:625-631
    19. Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K. Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol 2001;2:544-551
    20. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998;93:705-716
    21. Trifan OC, Hla T. Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med 2003;7:207-222
    22. Gately S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 2000;19:19-27
    23. Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schror K. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res1999;59:198-204
    24. Yang GZ, Li L, Ding HY, Zhou JS. Cyclooxygenase-2 is over-expressed in Chinese esophageal squamous cell carcinoma, and correlated with NF-kappaB: an immunohistochemical study. Exp Mol Pathol 2005;79:214-218
    25. Yip-Schneider MT, Barnard DS, Billings SD, Cheng L, Heilman DK, Lin A, Marshall SJ, Crowell PL, Marshall MS, Sweeney CJ. Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis 2000;21:139-146
    26. Liu J, Yu HG, Yu JP, Wang XL, Zhou XD, Luo HS. Overexpression of cyclooxygenase-2 in gastric cancer correlates with the high abundance of vascular endothelial growth factor-C and lymphatic metastasis. Med Oncol 2005;22:389-397
    27. Sakuma K, Fujimori T, Hirabayashi K, Terano A. Cyclooxygenase (COX)-2 immunoreactivity and relationship to p53 and Ki-67 expression in colorectal cancer. J Gastroenterol 1999;34:189-194
    28. Cortes-Ramirez DA, Rodriguez-Tojo MJ, Gainza-Cirauqui ML, Martinez-Conde R, Aguirre-Urizar JM. Overexpression of cyclooxygenase-2 as a biomarker in different subtypes of the oral lichenoid disease. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:738-743
    29. Abrahao AC, Castilho RM, Squarize CH, Molinolo AA, dos Santos-Pinto D, Jr., Gutkind JS. A role for COX2-derived PGE2 and PGE2-receptor subtypes in head and neck squamous carcinoma cell proliferation. Oral Oncol 2010;46:880-887
    30. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 2005;310:1504-1510
    31. Krysan K, Reckamp KL, Dalwadi H, Sharma S, Rozengurt E, Dohadwala M, Dubinett SM. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res2005;65:6275-6281
    32. Bamba H, Ota S, Kato A, Kawamoto C, Matsuzaki F. Effect of prostaglandin E1 on vascular endothelial growth factor production by human macrophages and colon cancer cells. J Exp Clin Cancer Res 2000;19:219-223
    33. Morita I. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat 2002;68-69:165-175
    34. Chen YC, Shen SC, Tsai SH. Prostaglandin D(2) and J(2) induce apoptosis in human leukemia cells via activation of the caspase 3 cascade and production of reactive oxygen species. Biochim Biophys Acta 2005;1743:291-304
    35. Ward C, Dransfield I, Murray J, Farrow SN, Haslett C, Rossi AG. Prostaglandin D2 and its metabolites induce caspase-dependent granulocyte apoptosis that is mediated via inhibition of I kappa B alpha degradation using a peroxisome proliferator-activated receptor-gamma-independent mechanism. J Immunol 2002;168:6232-6243
    36. Tessner TG, Muhale F, Riehl TE, Anant S, Stenson WF. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J Clin Invest 2004;114:1676-1685
    37. Howe LR, Chang SH, Tolle KC, Dillon R, Young LJ, Cardiff RD, Newman RA, Yang P, Thaler HT, Muller WJ, Hudis C, Brown AM, Hla T, Subbaramaiah K, Dannenberg AJ. HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res 2005;65:10113-10119
    38. Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane TF, Hla T. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001;276:18563-18569
    39. Du Y, Zhang S, Wang Z, Zhou W, Luan M, Yang X, Chen N. Induction of apoptosis and cell cycle arrest by NS398 in oral squamous cell carcinoma cells via downregulation of E2 promoter-binding factor-1. Oncol Rep 2008;20:605-611
    40. Gasparini G, Longo R, Sarmiento R, Morabito A. Inhibitors ofcyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol 2003;4:605-615
    41. Patel MI, Subbaramaiah K, Du B, Chang M, Yang P, Newman RA, Cordon-Cardo C, Thaler HT, Dannenberg AJ. Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res 2005;11:1999-2007
    42. Kase S, Osaki M, Honjo S, Takeda A, Adachi K, Araki K, Ito H. A selective cyclooxygenase-2 inhibitor, NS398, inhibits cell growth and induces cell cycle arrest in the G2/M phase in human esophageal squamous cell carcinoma cells. J Exp Clin Cancer Res 2004;23:301-307
    43. Nystrom ML, McCulloch D, Weinreb PH, Violette SM, Speight PM, Marshall JF, Hart IR, Thomas GJ. Cyclooxygenase-2 inhibition suppresses alphavbeta6 integrin-dependent oral squamous carcinoma invasion. Cancer Res 2006;66:10833-10842
    44. Che SM, Zhang XZ, Hou L, Song TB. Cyclooxygenase-2 inhibitor NS398 enhances radiosensitivity of radioresistant esophageal cancer cells by inhibiting AKT activation and inducing apoptosis. Cancer Invest 2010;28:679-688
    45. Li S, Tong Q, Zhang W, Wang Q, Chen Z, Wu Q. Mechanism of growth inhibitory effects of cyclooxygenase-2 inhibitor-NS398 on cancer cells. Cancer Invest 2008;26:333-337
    46. Liu JF, Zhu GJ, Jamieson GG, Wu TC, Zhu TN, Shan BE, Drew PA. NS-398 induces apoptosis in human esophageal cancer cells through inhibition of NF-kappaB downstream regulation of cyclooxygenase-2. Cancer Invest 2009;27:17-23
    47. Zhang X, Miao X, Tan W, Ning B, Liu Z, Hong Y, Song W, Guo Y, Shen Y, Qiang B, Kadlubar FF, Lin D. Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 2005;129:565-576
    48. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotypereconstruction from population data. Am J Hum Genet 2001;68:978-989
    49. Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003;73:1162-1169
    50. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70
    51. Wild CP. Environmental exposure measurement in cancer epidemiology. Mutagenesis 2009;24:117-125
    52. Horikawa Y, Gu J, Wu X. Genetic susceptibility to bladder cancer with an emphasis on gene-gene and gene-environmental interactions. Curr Opin Urol 2008;18:493-498
    53. Taioli E. Gene-environment interaction in tobacco-related cancers. Carcinogenesis 2008;29:1467-1474
    54. Kotnis A, Sarin R, Mulherkar R. Genotype, phenotype and cancer: role of low penetrance genes and environment in tumour susceptibility. J Biosci 2005;30:93-102
    55. Song N, Tan W, Xing D, Lin D. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis 2001;22:11-16
    56. Xing D, Tan W, Wei Q, Lin D. Polymorphisms of the DNA repair gene XPD and risk of lung cancer in a Chinese population. Lung Cancer 2002;38:123-129
    57. Tan W, Chen GF, Xing DY, Song CY, Kadlubar FF, Lin DX. Frequency of CYP2A6 gene deletion and its relation to risk of lung and esophageal cancer in the Chinese population. Int J Cancer 2001;95:96-101
    58. Papadakis ED, Soulitzis N, Spandidos DA. Association of p53 codon 72 polymorphism with advanced lung cancer: the Arg allele is preferentially retained in tumours arising in Arg/Pro germline heterozygotes. Br J Cancer 2002;87:1013-1018
    59. Wu X, Zhao H, Amos CI, Shete S, Makan N, Hong WK, Kadlubar FF, Spitz MR. p53 Genotypes and Haplotypes Associated With Lung CancerSusceptibility and Ethnicity. J Natl Cancer Inst 2002;94:681-690
    60. Pande M, Amos CI, Eng C, Frazier ML. Interactions between cigarette smoking and selected polymorphisms in xenobiotic metabolizing enzymes in risk for colorectal cancer: A case-only analysis. Mol Carcinog 2010;49:974-980
    61. Jain M, Kumar S, Rastogi N, Lal P, Ghoshal UC, Tiwari A, Pant MC, Baiq MQ, Mittal B. GSTT1, GSTM1 and GSTP1 genetic polymorphisms and interaction with tobacco, alcohol and occupational exposure in esophageal cancer patients from North India. Cancer Lett 2006;242:60-67
    62. Hu Z, Ma H, Chen F, Wei Q, Shen H. XRCC1 polymorphisms and cancer risk: a meta-analysis of 38 case-control studies. Cancer Epidemiol Biomarkers Prev 2005;14:1810-1818
    63. Fontana L, Bosviel R, Delort L, Guy L, Chalabi N, Kwiatkowski F, Satih S, Rabiau N, Boiteux JP, Chamoux A, Bignon YJ, Bernard-Gallon DJ. DNA repair gene ERCC2, XPC, XRCC1, XRCC3 polymorphisms and associations with bladder cancer risk in a French cohort. Anticancer Res 2008;28:1853-1856
    64. Shiboski CH, Schmidt BL, Jordan RC. Tongue and tonsil carcinoma: increasing trends in the U.S. population ages 20-44 years. Cancer 2005;103:1843-1849
    65. Annertz K, Anderson H, Biorklund A, Moller T, Kantola S, Mork J, Olsen JH, Wennerberg J. Incidence and survival of squamous cell carcinoma of the tongue in Scandinavia, with special reference to young adults. Int J Cancer 2002;101:95-99
    66. Piranda DN, Festa-Vasconcellos JS, Amaral LM, Bergmann A, Vianna-Jorge R. Polymorphisms in regulatory regions of cyclooxygenase-2 gene and breast cancer risk in Brazilians: a case-control study. BMC Cancer 10:613
    67. Liu F, He Y, Peng X, Wang W, Yang X. Association of the 8473T>C Cyclooxygenase-2 (COX-2) Gene Polymorphism with Lung Cancer Risk in Asians. Asian Pac J Cancer Prev 2011;11:1257-1262
    68. Piranda DN, Festa-Vasconcellos JS, Amaral LM, Bergmann A, Vianna-Jorge R. Polymorphisms in regulatory regions of cyclooxygenase-2 gene and breast cancer risk in Brazilians: a case-control study. BMC Cancer 2010;10:613
    69. Wang CH, Wu KH, Yang YL, Peng CT, Wang RF, Tsai CW, Tsai RY, Lin DT, Tsai FJ, Bau DT. Association study of cyclooxygenase 2 single nucleotide polymorphisms and childhood acute lymphoblastic leukemia in Taiwan. Anticancer Res 2010;30:3649-3653
    70. Jeong SW, Tae K, Lee SH, Kim KR, Park CW, Park BL, Shin HD. Cox-2 and IL-10 polymorphisms and association with squamous cell carcinoma of the head and neck in a Korean sample. J Korean Med Sci 2010;25:1024-1028
    71. Zhang J, Dhakal IB, Lang NP, Kadlubar FF. Polymorphisms in inflammatory genes, plasma antioxidants, and prostate cancer risk. Cancer Causes Control 2010;21:1437-1444
    72. Farnebo L, Jedlinski A, Ansell A, Vainikka L, Thunell LK, Grenman R, Johansson AC, Roberg K. Proteins and single nucleotide polymorphisms involved in apoptosis, growth control, and DNA repair predict cisplatin sensitivity in head and neck cancer cell lines. Int J Mol Med 2009;24:549-556
    73. Ashktorab H, Tsang S, Luke B, Sun Z, Adam-Campbell L, Kwagyan J, Poirier R, Akter S, Akhgar A, Smoot D, Munroe DJ, Ali IU. Protective effect of Cox-2 allelic variants on risk of colorectal adenoma development in African Americans. Anticancer Res 2008;28:3119-3123
    74. Peters WH, Lacko M, Te Morsche RH, Voogd AC, Oude Ophuis MB, Manni JJ. COX-2 polymorphisms and the risk for head and neck cancer in white patients. Head Neck 2009;31:938-943
    75. Chiang SL, Chen PH, Lee CH, Ko AM, Lee KW, Lin YC, Ho PS, Tu HP, Wu DC, Shieh TY, Ko YC. Up-regulation of inflammatory signalings by areca nut extract and role of cyclooxygenase-2 -1195G>a polymorphism reveal risk of oral cancer. Cancer Res 2008;68:8489-8498
    76. Lin YC, Huang HI, Wang LH, Tsai CC, Lung O, Dai CY, Yu ML, Ho CK, Chen CH. Polymorphisms of COX-2 -765G>C and p53 codon 72 and risks oforal squamous cell carcinoma in a Taiwan population. Oral Oncol 2008;44:798-804
    77. Ben Nasr H, Chahed K, Bouaouina N, Chouchane L. PTGS2 (COX-2) -765 G > C functional promoter polymorphism and its association with risk and lymph node metastasis in nasopharyngeal carcinoma. Mol Biol Rep 2009;36:193-200
    78. Campa D, Hashibe M, Zaridze D, Szeszenia-Dabrowska N, Mates IN, Janout V, Holcatova I, Fabianova E, Gaborieau V, Hung RJ, Boffetta P, Brennan P, Canzian F. Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract. Cancer Causes Control 2007;18:449-455
    79. Grimminger PP, Stohlmacher J, Vallbohmer D, Schneider PM, Holscher AH, Metzger R, Danenberg PV, Brabender J. Prognostic Significance and Clinicopathological Associations of COX-2 SNP in Patients with Nonsmall Cell Lung Cancer. J Oncol 2009;2009:139590
    80. Dossus L, Kaaks R, Canzian F, Albanes D, Berndt SI, Boeing H, Buring J, Chanock SJ, Clavel-Chapelon F, Feigelson HS, Gaziano JM, Giovannucci E, Gonzalez C, Haiman CA, Hallmans G, Hankinson SE, Hayes RB, Henderson BE, Hoover RN, Hunter DJ, Khaw KT, Kolonel LN, Kraft P, Ma J, Le Marchand L, Lund E, Peeters PH, Stampfer M, Stram DO, Thomas G, Thun MJ, Tjonneland A, Trichopoulos D, Tumino R, Riboli E, Virtamo J, Weinstein SJ, Yeager M, Ziegler RG, Cox DG. PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: results from the Breast and Prostate Cancer Cohort Consortium (BPC3). Carcinogenesis 2010;31:455-461
    81. Hoff JH, te Morsche RH, Roelofs HM, van der Logt EM, Nagengast FM, Peters WH. COX-2 polymorphisms -765G-->C and -1195A-->G and colorectal cancer risk. World J Gastroenterol 2009;15:4561-4565
    82. Vogel U, Segel S, Dethlefsen C, Tjonneland A, Saber AT, Wallin H, Jensen MK, Schmidt EB, Andersen PS, Overvad K. Associations between COX-2 polymorphisms, blood cholesterol and risk of acute coronary syndrome.Atherosclerosis 2010;209:155-162
    83. Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, Humphries SE, Laurent GJ. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 2002;22:1631-1636
    84. Kristinsson JO, van Westerveld P, te Morsche RH, Roelofs HM, Wobbes T, Witteman BJ, Tan AC, van Oijen MG, Jansen JB, Peters WH. Cyclooxygenase-2 polymorphisms and the risk of esophageal adeno- or squamous cell carcinoma. World J Gastroenterol 2009;15:3493-3497
    85. Upadhyay R, Jain M, Kumar S, Ghoshal UC, Mittal B. Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squmaous cell carcinoma. Mutat Res 2009;663:52-59
    86. Zhao D, Xu D, Zhang X, Wang L, Tan W, Guo Y, Yu D, Li H, Zhao P, Lin D. Interaction of cyclooxygenase-2 variants and smoking in pancreatic cancer: a possible role of nucleophosmin. Gastroenterology 2009;136:1659-1668
    87.赵丹.环氧化酶-2遗传变异和吸烟交互作用与胰腺癌-核仁磷酸蛋白的作用.[博士学位论文].北京:中国协和医科大学,2009;
    88. Siemes C, Visser LE, Coebergh JW, Hofman A, Uitterlinden AG, Stricker BH. Protective effect of NSAIDs on cancer and influence of COX-2 C(-765G) genotype. Curr Cancer Drug Targets 2008;8:753-764
    89. Shen J, Gammon MD, Terry MB, Teitelbaum SL, Neugut AI, Santella RM. Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk. Breast Cancer Res 2006;8:R71
    90. Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB, Stemhagen A, Fraumeni JF, Jr. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988;48:3282-3287
    91. Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT, Gupta PC, Hackshaw A, Matos E, Samet J, Sitas F, Smith J, Stayner L, Straif K, Thun MJ,Wichmann HE, Wu AH, Zaridze D, Peto R, Doll R. Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst 2004;96:99-106
    92. Hashibe M, Boffetta P, Zaridze D, Shangina O, Szeszenia-Dabrowska N, Mates D, Janout V, Fabianova E, Bencko V, Moullan N, Chabrier A, Hung R, Hall J, Canzian F, Brennan P. Evidence for an important role of alcohol- and aldehyde-metabolizing genes in cancers of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev 2006;15:696-703
    93. Hobbs CG, Sterne JA, Bailey M, Heyderman RS, Birchall MA, Thomas SJ. Human papillomavirus and head and neck cancer: a systematic review and meta-analysis. Clin Otolaryngol 2006;31:259-266
    94. Shi J, Misso NL, Kedda MA, Horn J, Welch MD, Duffy DL, Williams C, Thompson PJ. Cyclooxygenase-2 gene polymorphisms in an Australian population: association of the -1195G > A promoter polymorphism with mild asthma. Clin Exp Allergy 2008;38:913-920
    95. Sakaki M, Makino R, Hiroishi K, Ueda K, Eguchi J, Hiraide A, Doi H, Omori R, Imawari M. Cyclooxygenase-2 gene promoter polymorphisms affect susceptibility to hepatitis C virus infection and disease progression. Hepatol Res 2010;40:1219-1226
    96. Liu F, Pan K, Zhang X, Zhang Y, Zhang L, Ma J, Dong C, Shen L, Li J, Deng D, Lin D, You W. Genetic variants in cyclooxygenase-2: Expression and risk of gastric cancer and its precursors in a Chinese population. Gastroenterology 2006;130:1975-1984
    1.卫生部新闻办公室.第三次全国全国死因调查主要情况.中国肿瘤2008;17:344-345
    2. Herschman HR. Prostaglandin synthase 2. Biochim Biophys Acta 1996;1299:125-140
    3. Herschman HR, Reddy ST, Xie W. Function and regulation of prostaglandin synthase-2. Adv Exp Med Biol 1997;407:61-66
    4. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000;69:145-182
    5. Rouzer CA, Marnett LJ. Cyclooxygenases: structural and functional insights. J Lipid Res 2009;50 Suppl:S29-34
    6. van der Merwe JQ, Ohland CL, Hirota CL, MacNaughton WK. Prostaglandin E2 derived from cyclooxygenases 1 and 2 mediates intestinal epithelial ion transport stimulated by the activation of protease-activated receptor 2. J Pharmacol Exp Ther 2009;329:747-752
    7. Wang MT, Honn KV, Nie D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev 2007;26:525-534
    8. Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 2003;4:431-436
    9. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 2005;310:1504-1510
    10. Colucci R, Blandizzi C, Tanini M, Vassalle C, Breschi MC, Del Tacca M. Gastrin promotes human colon cancer cell growth via CCK-2 receptor-mediated cyclooxygenase-2 induction and prostaglandin E2 production. Br J Pharmacol 2005;144:338-348
    11. Krysan K, Reckamp KL, Dalwadi H, Sharma S, Rozengurt E, Dohadwala M, Dubinett SM. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells inan epidermal growth factor receptor-independent manner. Cancer Res 2005;65:6275-6281
    12. Bamba H, Ota S, Kato A, Kawamoto C, Matsuzaki F. Effect of prostaglandin E1 on vascular endothelial growth factor production by human macrophages and colon cancer cells. J Exp Clin Cancer Res 2000;19:219-223
    13. Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001;1:11-21
    14. Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med 2002;53:35-57
    15. Iniguez MA, Rodriguez A, Volpert OV, Fresno M, Redondo JM. Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends Mol Med 2003;9:73-78
    16. Cao Y, Prescott SM. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 2002;190:279-286
    17. Tatsuguchi A MK, Shinji Y, Gudis K, Tsukui T, Kishida T, Fukuda Y, Sugisaki Y, Tokunaga A, Tajiri T, Sakamoto C. Cyclooxygenase-2 expression correlates with angiogenesis and apoptosis in gastric cancer tissue. Hum Pathol 2004 35:488-495.
    18. Subbaramaiah K, Marmo TP, Dixon DA, Dannenberg AJ. Regulation of cyclooxgenase-2 mRNA stability by taxanes: evidence for involvement of p38, MAPKAPK-2, and HuR. J Biol Chem 2003;278:37637-37647
    19. Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M, Miura K, Harris CC. Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 2003;63:728-734
    20. Morita I. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat 2002;68-69:165-175
    21. Chen XL SB, Sun RQ, Zhang J, Wang YL. Relationship between expression and distribution of cyclooxygenase-2 and bcl-2 in human gastric adenocarcinoma. World J Gastroenterol 2005;11:1228-1231
    22. Hla T, Bishop-Bailey D, Liu CH, Schaefers HJ, Trifan OC. Cyclooxygenase-1and -2 isoenzymes. Int J Biochem Cell Biol 1999;31:551-557
    23. Dixon DA. Regulation of COX-2 expression in human cancers. Prog Exp Tumor Res 2003;37:52-71
    24. Singh B, Berry JA, Shoher A, Ramakrishnan V, Lucci A. COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol 2005;26:1393-1399
    25. Sakamoto T, Kondo K, Yamasoba T, Sugasawa M, Kaga K. Elevated expression of cyclooxygenase-2 in adenocarcinoma of the parotid gland: insights into malignant transformation of pleomorphic adenoma. Ann Otol Rhinol Laryngol 2004;113:930-935
    26. Koga T, Shibahara K, Kabashima A, Sumiyoshi Y, Kimura Y, Takahashi I, Kakeji Y, Maehara Y. Overexpression of cyclooxygenase-2 and tumor angiogenesis in human gastric cancer. Hepatogastroenterology 2004;51:1626-1630
    27. Li L, Zhao J, Wu Z, Wang G, Chen G. Meta-analysis: clinicopathological and prognostic significance of cyclooxygenase-2 expression on oesophageal squamous cell carcinoma. Aliment Pharmacol Ther 2009;30:589-596
    28. Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner BM, Koki AT, Fahey TJ, 3rd. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 1999;59:987-990
    29. Buckman SY, Gresham A, Hale P, Hruza G, Anast J, Masferrer J, Pentland AP. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 1998;19:723-729
    30. Renkonen J, Wolff H, Paavonen T. Expression of cyclo-oxygenase-2 in human tongue carcinoma and its precursor lesions. Virchows Arch 2002;440:594-597
    31. Vane J. Suppression of intestinal polyposis by inhibition of COX-2 in Apc knockout mice. Jpn J Cancer Res 1997;88:inside front cover
    32. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM. Suppression of intestinal polyposis inApc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996;87:803-809
    33. Tiano HF, Loftin CD, Akunda J, Lee CA, Spalding J, Sessoms A, Dunson DB, Rogan EG, Morham SG, Smart RC, Langenbach R. Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res 2002;62:3395-3401
    34. Soumaoro LT, Uetake H, Takagi Y, Iida S, Higuchi T, Yasuno M, Enomoto M, Sugihara K. Coexpression of VEGF-C and Cox-2 in human colorectal cancer and its association with lymph node metastasis. Dis Colon Rectum 2006;49:392-398
    35. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999;284:1994-1998
    36. Gallo O, Masini E, Bianchi B, Bruschini L, Paglierani M, Franchi A. Prognostic significance of cyclooxygenase-2 pathway and angiogenesis in head and neck squamous cell carcinoma. Hum Pathol 2002;33:708-714
    37. Beasley NJ, Prevo R, Banerji S, Leek RD, Moore J, van Trappen P, Cox G, Harris AL, Jackson DG. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 2002;62:1315-1320
    38. Ding YB, Shi RH, Tong JD, Li XY, Zhang GX, Xiao WM, Yang JG, Bao Y, Wu J, Yan ZG, Wang XH. PGE2 up-regulates vascular endothelial growth factor expression in MKN28 gastric cancer cells via epidermal growth factor receptor signaling system. Exp Oncol 2005;27:108-113
    39. Huang SP, Wu MS, Shun CT, Wang HP, Hsieh CY, Kuo ML, Lin JT. Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma. J Biomed Sci 2005;12:229-241
    40. Tamura M, Sebastian S, Gurates B, Yang S, Fang Z, Bulun SE. Vascular endothelial growth factor up-regulates cyclooxygenase-2 expression in human endothelial cells. J Clin Endocrinol Metab 2002;87:3504-3507
    41. Yao M, Kargman S, Lam EC, Kelly CR, Zheng Y, Luk P, Kwong E, Evans JF, Wolfe MM. Inhibition of cyclooxygenase-2 by rofecoxib attenuates the growth and metastatic potential of colorectal carcinoma in mice. Cancer Res 2003;63:586-592
    42. Bing RJ, Miyataka M, Rich KA, Hanson N, Wang X, Slosser HD, Shi SR. Nitric oxide, prostanoids, cyclooxygenase, and angiogenesis in colon and breast cancer. Clin Cancer Res 2001;7:3385-3392
    43. Leahy KM, Ornberg RL, Wang Y, Zweifel BS, Koki AT, Masferrer JL. Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res 2002;62:625-631
    44. Kinoshita T, Takahashi Y, Sakashita T, Inoue H, Tanabe T, Yoshimoto T. Growth stimulation and induction of epidermal growth factor receptor by overexpression of cyclooxygenases 1 and 2 in human colon carcinoma cells. Biochim Biophys Acta 1999;1438:120-130
    45. Moraitis D, Du B, De Lorenzo MS, Boyle JO, Weksler BB, Cohen EG, Carew JF, Altorki NK, Kopelovich L, Subbaramaiah K, Dannenberg AJ. Levels of cyclooxygenase-2 are increased in the oral mucosa of smokers: evidence for the role of epidermal growth factor receptor and its ligands. Cancer Res 2005;65:664-670
    46. Zhao Y, Agarwal VR, Mendelson CR, Simpson ER. Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 1996;137:5739-5742
    47. Pyo SW, Hashimoto M, Kim YS, Kim CH, Lee SH, Johnson KR, Wheelock MJ, Park JU. Expression of E-cadherin, P-cadherin and N-cadherin in oral squamous cell carcinoma: correlation with the clinicopathologic features and patient outcome. J Craniomaxillofac Surg 2007;35:1-9
    48. Czyzewska J, Guzinska-Ustymowicz K, Ustymowicz M, Pryczynicz A, Kemona A. The expression of E-cadherin-catenin complex in patients with advanced gastric cancer: role in formation of metastasis. Folia HistochemCytobiol 2010;48:37-45
    49. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 1997;94:3336-3340
    50. Takaoka K, Kishimoto H, Segawa E, Hashitani S, Zushi Y, Noguchi K, Sakurai K, Urade M. Elevated cell migration, invasion and tumorigenicity in human KB carcinoma cells transfected with COX-2 cDNA. Int J Oncol 2006;29:1095-1101
    51. Liu WK, Fu Q, Li YM, Jiang XY, Zhang MP, Zhang ZX. The relationship between cyclooxygenase-2, CD44v6, and nm23H1 in esophageal squamous cell carcinoma. Onkologie 2009;32:574-578
    52. Tatsuguchi A, Matsui K, Shinji Y, Gudis K, Tsukui T, Kishida T, Fukuda Y, Sugisaki Y, Tokunaga A, Tajiri T, Sakamoto C. Cyclooxygenase-2 expression correlates with angiogenesis and apoptosis in gastric cancer tissue. Hum Pathol 2004;35:488-495
    53. Lin MT, Lee RC, Yang PC, Ho FM, Kuo ML. Cyclooxygenase-2 inducing Mcl-1-dependent survival mechanism in human lung adenocarcinoma CL1.0 cells. Involvement of phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 2001;276:48997-49002
    54. Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res 2005;7:R422-435
    55. Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A, Aaronson SA, Lee SW. P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J 2002;21:5635-5644
    56. Enders GA. Cyclooxygenase-2 overexpression abrogates the antiproliferative effects of TGF-beta. Br J Cancer 2007;97:1388-1392
    57. Casado M, Molla B, Roy R, Fernandez-Martinez A, Cucarella C, Mayoral R, Bosca L, Martin-Sanz P. Protection against Fas-induced liver apoptosis in transgenic mice expressing cyclooxygenase 2 in hepatocytes. Hepatology2007;45:631-638
    58. Lin DT, Subbaramaiah K, Shah JP, Dannenberg AJ, Boyle JO. Cyclooxygenase-2: a novel molecular target for the prevention and treatment of head and neck cancer. Head Neck 2002;24:792-799
    59. Zweifel BS, Davis TW, Ornberg RL, Masferrer JL. Direct evidence for a role of cyclooxygenase 2-derived prostaglandin E2 in human head and neck xenograft tumors. Cancer Res 2002;62:6706-6711
    60. Consortium IHGS. Finishing the euchromatic sequence of the human genome. Nature 2004;431:931-945
    61. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 1998;8:1229-1231
    62. Housman D, Ledley FD. Why pharmacogenomics? Why now? Nat Biotechnol 1998;16:492-493
    63. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 1999;22:239-247
    64. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999;22:231-238
    65. Nakachi K, Hayashi S, Kawajiri K, Imai K. Association of cigarette smoking and CYP1A1 polymorphisms with adenocarcinoma of the lung by grades of differentiation. Carcinogenesis 1995;16:2209-2213
    66. Nebert DW, McKinnon RA, Puga A. Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol 1996;15:273-280
    67. Hildesheim A, Chen CJ, Caporaso NE, Cheng YJ, Hoover RN, Hsu MM, Levine PH, Chen IH, Chen JY, Yang CS, et al. Cytochrome P4502E1 geneticpolymorphisms and risk of nasopharyngeal carcinoma: results from a case-control study conducted in Taiwan. Cancer Epidemiol Biomarkers Prev 1995;4:607-610
    68. Hou SM, Ryk C, Kannio A, Angelini S, Falt S, Nyberg F, Husgafvel-Pursiainen K. Influence of common XPD and XRCC1 variant alleles on p53 mutations in lung tumors. Environ Mol Mutagen 2003;41:37-42
    69. Sreeja L, Syamala VS, Syamala V, Hariharan S, Raveendran PB, Vijayalekshmi RV, Madhavan J, Ankathil R. Prognostic importance of DNA repair gene polymorphisms of XRCC1 Arg399Gln and XPD Lys751Gln in lung cancer patients from India. J Cancer Res Clin Oncol 2008;134:645-652
    70. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L, Phillips DH, Canzian F, Haugen A. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006;27:560-567
    71.德印,齐军,谭文,等.北京地区汉族人群DNA修复基因XPD单核苷酸多态性与肺癌及食管癌风险的研究.中华医学遗传学杂志2003;30:35-38
    72. Yin J, Li J, Ma Y, Guo L, Wang H, Vogel U. The DNA repair gene ERCC2/XPD polymorphism Arg 156Arg (A22541C) and risk of lung cancer in a Chinese population. Cancer Lett 2005;223:219-226
    73. Zhang B, Sun T, Xue L, Han X, Lu N, Shi Y, Tan W, Zhou Y, Zhao D, Zhang X, Guo Y, Lin D. Functional polymorphisms in FAS and FASL contribute to increased apoptosis of tumor infiltration lymphocytes and risk of breast cancer. Carcinogenesis 2007;28:1067-1073
    74. Sun T, Zhou Y, Li H, Han X, Shi Y, Wang L, Miao X, Tan W, Zhao D, Zhang X, Guo Y, Lin D. FASL -844C polymorphism is associated with increased activation-induced T cell death and risk of cervical cancer. J Exp Med 2005;202:967-974
    75. Kang S, Dong SM, Seo SS, Kim JW, Park SY. FAS -1377 G/A polymorphism and the risk of lymph node metastasis in cervical cancer. Cancer Genet Cytogenet 2008;180:1-5
    76. Lehnerdt GF, Franz P, Bankfalvi A, Grehl S, Kelava A, Nuckel H, Lang S,Schmid KW, Siffert W, Bachmann HS. The regulatory BCL2 promoter polymorphism (-938C>A) is associated with relapse and survival of patients with oropharyngeal squamous cell carcinoma. Ann Oncol 2009;20:1094-1099
    77. Kidd LR, Coulibaly A, Templeton TM, Chen W, Long LO, Mason T, Bonilla C, Akereyeni F, Freeman V, Isaacs W, Ahaghotu C, Kittles RA. Germline BCL-2 sequence variants and inherited predisposition to prostate cancer. Prostate Cancer Prostatic Dis 2006;9:284-292
    78. Nogueira de Souza NC, Brenna SM, Campos F, Syrjanen KJ, Baracat EC, Silva ID. Interleukin-6 polymorphisms and the risk of cervical cancer. Int J Gynecol Cancer 2006;16:1278-1282
    79. Kohaar I, Thakur N, Salhan S, Batra S, Singh V, Sharma A, Sodhani P, Das BC, Sarkar DP, Bharadwaj M. TNFalpha-308G/A polymorphism as a risk factor for HPV associated cervical cancer in Indian population. Cell Oncol 2007;29:249-256
    80. Koh WP, Yuan JM, van den Berg D, Lee HP, Yu MC. Interaction between cyclooxygenase-2 gene polymorphism and dietary n-6 polyunsaturated fatty acids on colon cancer risk: the Singapore Chinese Health Study. Br J Cancer 2004;90:1760-1764
    81. Wu HC, Chang CH, Ke HL, Chang WS, Cheng HN, Lin HH, Wu CY, Tsai CW, Tsai RY, Lo WC, Bau DT. Association of cyclooxygenase 2 polymorphic genotypes with prostate cancer in taiwan. Anticancer Res 2010;31:221-225
    82. Ragin CC, Modugno F, Gollin SM. The epidemiology and risk factors of head and neck cancer: a focus on human papillomavirus. J Dent Res 2007;86:104-114
    83. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-130
    84. Paz-Elizur T, Ben-Yosef R, Elinger D, Vexler A, Krupsky M, Berrebi A, Shani A, Schechtman E, Freedman L, Livneh Z. Reduced repair of the oxidative
    8-oxoguanine DNA damage and risk of head and neck cancer. Cancer Res 2006;66:11683-11689
    85. Yang M, Kim WH, Choi Y, Lee SH, Kim KR, Lee HS, Tae K. Effects of ERCC1 expression in peripheral blood on the risk of head and neck cancer. Eur J Cancer Prev 2006;15:269-273
    86. Zhang Z, Shi Q, Liu Z, Sturgis EM, Spitz MR, Wei Q. Polymorphisms of methionine synthase and methionine synthase reductase and risk of squamous cell carcinoma of the head and neck: a case-control analysis. Cancer Epidemiol Biomarkers Prev 2005;14:1188-1193
    87. Ho T, Wei Q, Sturgis EM. Epidemiology of carcinogen metabolism genes and risk of squamous cell carcinoma of the head and neck. Head Neck 2007;29:682-699
    88. Gattas GJ, de Carvalho MB, Siraque MS, Curioni OA, Kohler P, Eluf-Neto J, Wunsch-Filho V. Genetic polymorphisms of CYP1A1, CYP2E1, GSTM1, and GSTT1 associated with head and neck cancer. Head Neck 2006;28:819-826
    89. Oude Ophuis MB, Roelofs HM, van den Brandt PA, Peters WH, Manni JJ. Polymorphisms of the glutathione S-transferase P1 gene and head and neck cancer susceptibility. Head Neck 2003;25:37-43
    90. Jeong SW, Tae K, Lee SH, Kim KR, Park CW, Park BL, Shin HD. Cox-2 and IL-10 polymorphisms and association with squamous cell carcinoma of the head and neck in a Korean sample. J Korean Med Sci 2010;25:1024-1028
    91. Peters WH, Lacko M, Te Morsche RH, Voogd AC, Oude Ophuis MB, Manni JJ. COX-2 polymorphisms and the risk for head and neck cancer in white patients. Head Neck 2009;31:938-943
    92. Chiang SL, Chen PH, Lee CH, Ko AM, Lee KW, Lin YC, Ho PS, Tu HP, Wu DC, Shieh TY, Ko YC. Up-regulation of inflammatory signalings by areca nut extract and role of cyclooxygenase-2 -1195G>a polymorphism reveal risk of oral cancer. Cancer Res 2008;68:8489-8498
    93. Lin YC, Huang HI, Wang LH, Tsai CC, Lung O, Dai CY, Yu ML, Ho CK, Chen CH. Polymorphisms of COX-2 -765G>C and p53 codon 72 and risks of oral squamous cell carcinoma in a Taiwan population. Oral Oncol 2008;44:798-804
    94. Ben Nasr H, Chahed K, Bouaouina N, Chouchane L. PTGS2 (COX-2) -765 G > C functional promoter polymorphism and its association with risk and lymph node metastasis in nasopharyngeal carcinoma. Mol Biol Rep 2009;36:193-200
    95. Campa D, Hashibe M, Zaridze D, Szeszenia-Dabrowska N, Mates IN, Janout V, Holcatova I, Fabianova E, Gaborieau V, Hung RJ, Boffetta P, Brennan P, Canzian F. Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract. Cancer Causes Control 2007;18:449-455
    96. Pu X, Lippman SM, Yang H, Lee JJ, Wu X. Cyclooxygenase-2 gene polymorphisms reduce the risk of oral premalignant lesions. Cancer 2009;115:1498-1506
    97. D'Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, Westra WH, Gillison ML. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 2007;356:1944-1956
    98. O'Brien JM. Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland, by P. Lichtenstein, N.V. Holm, P.K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki. N Engl J Med 343:78-84, 2000. Surv Ophthalmol 2000;45:167-168
    99. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000;343:78-85
    100. Travis RC, Reeves GK, Green J, Bull D, Tipper SJ, Baker K, Beral V, Peto R, Bell J, Zelenika D, Lathrop M. Gene-environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study. Lancet 2010;375:2143-2151