纳米金属氧化物的低温无模板合成及其基于QCM技术的气体敏感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,绿色化学己成为人们广为关注的新兴课题。根据绿色化学原理,本文针对石英晶体微天平敏感膜的要求,设计了一种低温无模板的水热合成新方法。通过对反应条件的控制和优化,使水热温度最高不超过120℃,反应时间缩短至3小时。与传统水热法最高250℃水热温度和24小时以上的水热时间相比,此法更加节能环保。在元素周期表中均匀选取了五种金属元素,即Sn, Fe, Zr,La和Mg。用新法成功合成了相应的纳米氧化物,即SnO2, Fe2O3, ZrO2, La2O3和MgO纳米材料。随后对这五种材料进行了X射线衍射和扫描隧道显微镜的表征实验。结果表明,它们均具有良好的比表面积和形貌特性。
     以此五种材料,常温制作了基于石英晶体微天平技术的甲基膦酸二甲脂室温传感器,并成功获取了传感器的重复性,灵敏度和选择性等重要参数。甲基膦酸二甲脂是一种常见的阻燃剂,由于其分子结构相似于战争毒气沙林,因此经常被用作沙林的模拟气体加以检测研究。本文实验结果对沙林传感器的研制具有一定的指导意义,同时也能给未来基于不同材料敏感膜的甲基膦酸二甲脂阵列型传感器的研发提供数据支持。
     另外,本文针对五种材料的合成及其相应的传感器特性,进行了一系列有意义的对比实验。分析对比实验结果,也得到了部分有益的结论。
Nowadays, the issue of Green Chemisty has been wildly concerned. According to the principle of Green Chemisty and the demand of Quartz Crystal Microbalance (QCM) technology, a kind of low temperature and template free hydrothermal method has been created. The highest hydrothermal temperature can be controlled as lower as120℃and reaction time not more than3hours by reaction conditions adjusting. Comparing to the traditional hydrothermal method, which often has as highest as about250℃hydrothermal temperature and above24hours reaction time, it's a both energy saving and environment friendly method. Five sorts of elements, Sn, Fe, Zr, La and Mg, have been choosed because of their average locations in Element Periodic Table. Their five relative nano-oxides, SnO2,Fe2O3, ZrO2, La2O3and MgO, have been synthesized by the novel hydrothermal method. Then the X Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) technologys have been applied to characterize them. The conclusion shows that the products have good rate surface area and promised morphology.
     Based on the QCM technology, the five kinds of nano-oxides were used as the sensing film materials and Dimethyl Methyl Phosphonate (DMMP) sensors were fabricated for the room temperature detection. The crucial parameters of the sensors, such as repeated response, sensive degree and selectivity, have been obtained. DMMP is a kind of fire proof reagent and is sdudied as a simulatent of warfare gas sarin usually because of their similar molecule structure. The experimental results of our work can give some significant advices to the sarin sensor and also can provide basic data support for the future sensor array of DMMP with the different materials as the sensing films.
     In addition, comparing experiments of synthsis and sensor sdudy to the five main nano-oxides have performed too. Some useful conclusions have been acquired from the analysis of their experimental data.
引文
1. Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Jin, Z.; Kong, L.-T.; Liu, J.-H. Metal Oxide Nanostructures and Their Gas Sensing Properties:A Review. Sensors 2012,12, 2610-2631.
    2. Wilson, C.A.; Grubbs, R.K.; George, S.M. Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chemistry of Materials 2005,17,5625-5634.
    3. Percival, C.J.; Stanley, S.; Galle, M.; Braithwaite, A.; Newton, M.I.; McHale, G.; Hayes, W. Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes. Analytical Chemistry 2001,73,4225-4228.
    4. Ding, B.; Yamazaki, M.; Shiratori, S. Electrospun fibrous polyacrylic acid membrane-based gas sensors. Sensors and Actuators B-Chemical 2005,106,477-483.
    5. Wang, X.H.; Zhang, J.; Zhu, Z.Q. Ammonia sensing characteristics of ZnO nanowires studied by quartz crystal microbalance. Applied Surface Science 2006,252,2404-2411.
    6. Matsuguchi, M.; Uno, T. Molecular imprinting strategy for solvent molecules and its application for QCM-based VOC vapor sensing. Sensors and Actuators B-Chemical 2006, 113,94-99.
    7. Sasaki, I.; Tsuchiya, H.; Nishioka, M.; Sadakata, M.; Okubo, T. Gas sensing with zeolite-coated quartz crystal microbalances-principal component analysis approach. Sensors and Actuators B-Chemical 2002,86,26-33.
    8. Nakamura, K.; Nakamoto, T.; Moriizumi, T. Classification and evaluation of sensing films for QCM odor sensors by steady-state sensor response measurement. Sensors and Actuators B-Chemical 2000,69,295-301.
    9. Wang, X.; Ding, B.; Sun, M.; Yu, J.; Sun, G. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sensors and Actuators B-Chemical2010,144,11-17.
    10. Wang, X.; Ding, B.; Yu, J.; Si, Y.; Yang, S.; Sun, G. Electro-netting:Fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing. Nanoscale 2011, 3,911-915.
    11. Yang, M.; He, J.; Hu, X.; Yan, C.; Cheng, Z. Synthesis of nanostructured copper oxide via oxalate precursors and their sensing properties for hydrogen cyanide gas. Analyst 2013, 138,1758-1763.
    12. Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors and Actuators B-Chemical 2013,178,485-493.
    13. Shen, G.; Chen, P.-C.; Ryu, K.; Zhou, C. Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry 2009,19,828-839.
    14. Hayashi, H.; Hakuta, Y. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water. Materials 2010,3,3794-3817.
    15. Lokhande, C.D.; Dubai, D.P.; Joo, O.-S. Metal oxide thin film based supercapacitors. Current Applied Physics 2011,11,255-270.
    16. Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides:A Review. Sensors 2012,12,7207-7258.
    17. Devan, R.S.; Patil, R.A.; Lin, J.-H.; Ma, Y.-R. One-Dimensional Metal-Oxide Nanostructures:Recent Developments in Synthesis, Characterization, and Applications. Advanced Functional Materials 2012,22,3326-3370.
    18. Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X.W. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials 2012,24,5166-5180.
    19. Li, Y.; Yang, X.-Y.; Feng, Y.; Yuan, Z.-Y; Su, B.-L. One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods:Synthesis, Characterizations, Properties and Applications. Critical Reviews in Solid State and Materials Sciences 2012, 37,1-74.
    20. Ren, Y.; Ma, Z.; Bruce, P.G. Ordered mesoporous metal oxides:synthesis and applications. Chemical Society Reviews 2012,41,4909-4927.
    21. Sui, R.; Charpentier, P. Synthesis of Metal Oxide Nanostructures by Direct Sol-Gel Chemistry in Supercritical Fluids. Chemical Reviews 2012,112,3057-3082.
    22. Eckelman, M.J.; Zimmerman, J.B.; Anastas, P.T. Toward green nano:E-factor analysis of several nanomaterial syntheses. J. Ind. Ecol.2008,12,316-328.
    23. Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.W.; Kim, S.; Yun, Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloid Surf. B-Biointerfaces 2009,73,332-338.
    24. Selvalm, K.; Krishnakumar, B.; Velmurugan, R.; Swaminathan, M. A simple one pot nano titania mediated green synthesis of 2-alkylbenzimidazoles and indazole from aromatic azides under UV and solar light. Catalysis Communications 2009,11,280-284.
    25. Shi, F.; Tse, M.K.; Zhou, S.L.; Pohl, M.M.; Radnik, J.; Hubner, S.; Jahnisch, K.; Bruckner, A.; Beller, M. Green and Efficient Synthesis of Sulfonamides Catalyzed by Nano-Ru/Fe3O4. Journal of the American Chemical Society 2009,131,1775-1779.
    26. Heravi, M.M.; Tavakoli-Hoseini, N.; Bamoharram, F.F. Silica-supported Preyssler nano particles:a green, reusable and highly efficient heterogeneous catalyst for the synthesis of carbamatoalkyl naphthols. Green Chemistry Letters and Reviews 2010,3,263-267.
    27. Paul, S.; Bhattacharyya, P.; Das, A.R. One-pot synthesis of dihydropyrano 2,3-c chromenes via a three component coupling of aromatic aldehydes, malononitrile, and 3-hydroxycoumarin catalyzed by nano-structured ZnO in water:a green protocol. Tetrahedron Letters 2011,52,4636-4641.
    28. Bhatte, K.D.; Sawant, D.N.; Pinjari, D.V.; Pandit, A.B.; Bhanage, B.M. One pot green synthesis of nano sized zinc oxide by sonochemical method. Materials Letters 2012,77, 93-95.
    29. Rezvani, M.A.; Shojaie, A.F.; Loghmani, M.H. Synthesis and characterization of novel nanocomposite, anatase sandwich type polyoxometalate, as a reusable and green nano catalyst in oxidation desulfurization of simulated gas oil. Catalysis Communications 2012, 25,36-40.
    30. Teimouri, A.; Chermahini, A.N. One-pot Green Synthesis of Pyrrole Derivatives Catalyzed by Nano Sulfated Zirconia as a Solid Acid Catalyst. Chinese Journal of Chemistry 2012,30,372-376.
    31. Vijayaraghavan, K.; Nalini, S.P.K.; Prakash, N.U.; Madhankumar, D. One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloid Surf. B-Biointerfaces 2012,94,114-117.
    32. 朱文详绿色化学与绿色化学教育.化学教育 2001,1,1-5.
    33. 孙玉绣;张大伟;金政伟纳米材料的制备方法及其应用.中国纺织出版社 2010.
    34. Du. T.; Ilegbusi, O.J. Synthesis and morphological characterization on PVP/ZnO nano hybrid films. Journal of Materials Science 2004,39,6105-6109.
    35. Ilegbusi, O.J.; Trakhtenberg, L. Synthesis and Conductometric Property of Sol-Gel-Derived ZnO/PVP Nano Hybrid Films. J. Mater. Eng. Perform.2013,22, 911-915.
    36. Chen, S.; Zhang, H.Y.; Wu, L.Y.; Zhao, Y.F.; Huang, C.L.; Ge, M.F.; Liu, Z.M. Controllable synthesis of supported Cu-M (M=Pt, Pd, Ru, Rh) bimetal nanocatalysts and their catalytic performances. Journal of Materials Chemistry 2012,22,9117-9122.
    37. Wu, Y.; Wang, X. Preparation and characterization of single-phase alpha-Fe2O3 nano-powders by Pechini sol-gel method. Materials Letters 2011,65,2062-2065.
    38. Huang, J.; Gong, Z.; Yang, X. Synthesis and Characterization of Nano-gamma-Fe2O3 by Sol-Gel Method. Advanced Science Letters 2011,4,3662-3665.
    39. Battisha, I.K.; Afifya, H.H.; Ibrahim, M. Synthesis of Fe2O3 concentrations and sintering temperature on FTIR and magnetic susceptibility measured from 4 to 300 K of monolith silica gel prepared by sol-gel technique. Journal of Magnetism and Magnetic Materials 2006,306,211-217.
    40. Sui, R.H.; Rizkalla, A.S.; Charpentier, P.A. Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO2. Langmuir 2006,22,4390-4396.
    41. Oleshko, V.R.; Howe, J.M.; Shukla, S.; Seal, S. High-resolution and analytical TEM investigation of metastable-tetragonal phase stabilization in undoped nanocrystalline zirconia. Journal ofNanoscience and Nanotechnology 2004,4,867-875.
    42. Hernandez Enriquez, J.M.; Cortez Lajas, L.A.; Garcia Alamilla, P.; Castillo Mares, A.; Sandoval Robles, G.; Garcia Serrano, L.A. Synthesis and characterization of mesoporous and nano-crystalline phosphate zirconium oxides. Journal of Alloys and Compounds 2009, 483,425-428.
    43. Liu, L.; Jie, T.; Li, Y.; Mei, Z.; Xidong, W. Synthesis and thermodynamic analysis of nano-La2O3. Progress in Natural Science 2007,17,838-844.
    44. Kumar, A.; Kumar, J. Defect and adsorbate induced infrared modes in sol-gel derived magnesium oxide nano-crystallites. Solid State Communications 2008,14767405-408.
    45. Kumar, A.; Kumar, J. On the synthesis and optical absorption studies of nano-size magnesium oxide powder. Journal of Physics and Chemistry of Solids 2008,69, 2764-2772.
    46. Rakmak, N.; Wiyaratn, W.; Bunyakan, C.; Chungsiriporn, J. Synthesis of Fe/MgO nano-crystal catalysts by sot-gel method for hydrogen sulfide removal. Chemical Engineering Journal 2010,162,84-90.
    47. Entezari, M.H.; Ghows, N. Micro-emulsion under ultrasound facilitates the fast synthesis of quantum dots of CdS at low temperature. Ultrasonics Sonochemistry 2011,18, 127-134.
    48. Ghows, N.; Entezari, M.H. Fast and easy synthesis of core-shell nanocrystal (CdS/TiO2) at low temperature by micro-emulsion under ultrasound. Ultrasonics Sonochemistry 2011, 18,629-634.
    49. Rong, C.; Jiang, R.Z.; Sarney, W.; Chu, D. Ultrasound-assisted micro-emulsion for synthesis of Pt and PtCo nano-particles. Electrochim. Acta 2010,55,6872-6878.
    50. Eslamian, M.; Ahmed, M.; Ali, A.H.H. A Theoretical Model for the Formation of Functional Micro- and Nano-Particles from Combustion of Emulsion Droplets. Dry. Technol 2011,29,1025-1036.
    51. Gao, G.; Xiang, L. Emulsion-phase synthesis of honeycomb-like Mg-5(OH)2(CO3)4 4H2O micro-spheres and subsequent decomposition to MgO. Journal of Alloys and Compounds 2010,495,242-246.
    52. Sawant, P.D.; Ramaniah, L.M.; Manohar, C. Capacity of nano-reactors of AOT micro-emulsions to form and sustain ultra small semiconductor quantum dots. Journal of Nanoscience and Nanotechnology 2006,6,241-247.
    53. Yamazaki, Y.; Gleiter, H.; Ou-Yang, Z.C.; Zhu, X.; Zhang, Z.; Shi, Q.F.; Shen, D.H.; Lu, K.Q. Mesoscopic phases and characteristics of nano-structured interfaces. Surface and Interface Analysis 2006,38,1068-1072.
    54. Yamazaki, Y.; Gleiter, H.; Tani, J.; Abe, Y.; Nakamura, K.; Mizoguchi, H.; Irie, T.; Watanabe, M.; Ito, D. Mesoscopic phase transitions and their critical behavior of nanostructured materials. Comput. Phys. Commun.2002,147,267-271.
    55. 汪信;陆路德纳米金属氧化物的制备及应用研究的若干进展.无机化学学报 2000, 16.213-216.
    56. Shang, Y.L.; Huo, L.; Jia, Y.L.; Liao, F.H.; Li, J.R.; Li, M.X.; Zhang, S.H. Electrorheological property of M-doped (M=Na, Zr) nano-sized TiO2 particle materials, influence of surface composition and microstructure. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2008,325,160-165.
    57. Yamazoe, N. Toward innovations of gas sensor technology. Sensors and Actuators B-Chemical 2005,108,2-14.
    58. Paulose, M.; Varghese, O.K.; Mor, G.K.; Grimes, C.A.; Ong, K.G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 2006, 77,398-402.
    59. Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide materials for development of integrated gas sensors-A comprehensive review. Critical Reviews in Solid State and Materials Sciences 2004,29,111-188.
    60. Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. Journal of Electroceramics 2001,7,143-167.
    61. Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research:How to? Sensors and Actuators B-Chemical 2007,121,18-35.
    62. Tomchenko, A.A.; Harmer, G.P.; Marquis, B.T. Detection of chemical warfare agents using nanostructured metal oxide sensors. Sensors and Actuators B-Chemical 2005,108, 41-55.
    63. Yu, C.; Hao, Q.; Saha, S.; Shi, L.; Kong, X.Y.; Wang, Z.L. Integration of metal oxide nanobelts with microsystems for nerve agent detection. Applied Physics Letters 2005,86.
    64. Kanan, S.M.; Tripp, C.P. Prefiltering strategies for metal oxide based sensors:The use of chemical displacers to selectively dislodge adsorbed organophosphonates from silica surfaces. Langmuir 2002,18,722-728.
    65. Kanan, S.M.; El-Kadri, O.M.; Abu-Yousef, I.A.; Kanan, M.C. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection. Sensors 2009,9,8158-8196.
    66. Zhao, Y; he, J.; Yang, M.; Gao, S.; Zuo, G.; Yan, C.; Cheng, Z. Single crystal WO3 nanoflakes as quartz crystal microbalance sensing layer for ultrafast detection of trace sarin simulant. Analytica ChimicaActa 2009,654,120-126.
    67. Zhao, Y.; Du, X.; Wang, X.; He, J.; Yu, Y.; He, H. Effects of F doping on TiO2 acidic sites and their application in QCM based gas sensors. Sensors and Actuators B-Chemical 2010, 151,205-211.
    68. Pei, Z.; Ma, X.; Ding, P.; Zhang, W.; Luo, Z.; Li, G. Study of a QCM Dimethyl Methylphosphonate Sensor Based on a ZnO-Modified Nanowire-Structured Manganese Dioxide Film. Sensors 2010,10,8275-8290.
    69. Lee, S.C.; Kim, S.Y.; Hwang, B.W.; Jung, S.Y.; Ragupathy, D.; Son, I.S.; Lee, D.D.; Kim, J.C. Improvement of H2S Sensing Properties of SnO2-Based Thick Film Gas Sensors Promoted with MoO3 and NiO. Sensors 2013,13,3889-3901.
    70. Roberts, M.E.; LeMieux, M.C.; Bao, Z. Sorted and Aligned Single-Walled Carbon Nanotube Networks for Transistor-Based Aqueous Chemical Sensors. Acs Nano 2009,3, 3287-3293.
    71. Joo, B.-S.; Huh, J.-S.; Lee, D.-D. Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sensors and Actuators B-Chemical 2007,121,47-53.
    72. El-Sherif, M.; Bansal, L.; Yuan, J. Fiber optic sensors for detection of toxic and biological threats. Sensors 2007,7,3100-3118.
    73. Zimmermann, C.; Mazein, P.; Rebiere, D.; Dejous, C.; Pistre, J.; Planade, R. Detection of GB and DMMP vapors by love wave acoustic sensors using strong acidic fluoride polymers. Ieee Sensors Journal 2004,4,479-488.
    74. Kong, L.; Wang, J.; Fu, X.; Zhong, Y.; Meng, F.; Luo, T.; Liu, J. p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubes for detection of nerve agents. Carbon 2010,48,1262-1270.
    75. Wang, Y.; Yang, Z.; Hou, Z.; Xu, D.; Wei, L.; Kong, E.S.-W.; Zhang, Y Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection. Sensors and Actuators B-Chemical 2010,150,708-714.
    76. Huang, J.; Jiang, Y.; Du, X.; Bi, J. A new siloxane polymer for chemical vapor sensor. Sensors and Actuators B-Chemical 2010,146,388-394.
    77. Yang, M.; Kim, H.C.; Hong, S.-H. DMMP gas sensing behavior of ZnO-coated single-wall carbon nanotube network sensors. Materials Letters 2012,89,312-315.
    78. Wang, Y.; Wang, Z.; Hu, N.; Wei, L.; Xu, D.; Wei, H.; Kong, E.S.-W.; Zhang, Y. Hexafluorobisphenol A Covalently Functionalized Single-Walled Carbon Nanotubes for Detection of Dimethyl Methylphosphonate Vapor. Journal ofNanoscience and Nanotechnology 2011,11,4874-4881.
    79. Ponzoni, A.; Comini, E.; Concina, I.; Ferroni, M.; Falasconi, M.; Gobbi, E.; Sberveglieri, V.; Sberveglieri, G. Nanostructured Metal Oxide Gas Sensors, a Survey of Applications Carried out at SENSOR Lab, Brescia (Italy) in the Security and Food Quality Fields. Sensors 2012,12,17023-17045.
    80. Lee, H.J.; Park, K.K.; Kupnik, M.; Oralkan, O.; Khuri-Yakub, B.T. Chemical Vapor Detection Using a Capacitive Micromachined Ultrasonic Transducer. Analytical Chemistry 2011,83,9314-9320.
    81. Kim, Y.; Lee, S.; Choi, H.H.; Noh, J.-S.; Lee, W. Detection of a nerve agent simulant using single-walled carbon nanotube networks:dimethyl-methyl-phosphonate. Nanotechnology 2010,21.
    82. Lee, M.; Kim, T.; Bae, C.; Shin, H.; Kim, J. Fabrication and applications of metal-oxide nano-tubes. Jom 2010,62,44-49.
    83. Piao, Y.; Kim, H.S.; Sung, Y.-E.; Hyeon, T. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chemical Communications 2010,46,118-120.
    84. Shon, I.-J.; Du, S.-L.; Ko, I.-Y.; Kim, T.-W.; Doh, J.-M.; Yoon, J.-K.; Park, S.-W. Mechanical synthesis and rapid consolidation of a nanocrystalline 5.33Fe(0.37)Cr(0.16)Al(0.4)Si(0.07)-Al2O3 composite by high-frequency induction heating. Ceramics International 2011,37,1353-1357.
    85. Chuang, P.K.; Wang, L.C.; Kuo, C.T. Development of a high performance integrated sensor chip with a multi-walled carbon nanotube assisted sensing array. Thin Solid Films 2013,529,205-208.
    86. Bondavalli, P.; Legagneux, P.; Pribat, D. Sub ppm Gas Sensing Using a CNTFET-Based Sensor Array Fabricated Using Different Metals as Electrodes. Journal of the Korean Physical Society 2009,54,510-513.
    87. Shen, C.Y.; Shen, Y.T.; Wu, L. Viscoelastic properties of polymer films on surface acoustic wave organophosphorous vapor sensors. Journal of Materials Science 2002,37, 295-301.
    88. Harbeck, M.; Tasaltin, C.; Gurol, I.; Musluoglu, E.; Ahsen, V.; Ozturk, Z.Z. Preferential sorption of polar compounds by fluoroalkyloxy substituted phthalocyanines for the use in sorption based gas sensors. Sensors and Actuators B-Chemical 2010,150,616-624.
    89. Mumyakmaz, B.; Ozmen, A.; Ebeoglu, M.A.; Tasaltin, C.; Gurol,1. A study on the development of a compensation method for humidity effect in QCM sensor responses. Sensors and Actuators B-Chemical 2010,147,277-282.
    90. Wild, A.; Winter, A.; Hager, M.D.; Schubert, U.S. Fluorometric, water-based sensors for the detection of nerve gas G mimics DMMP, DCP and DCNP. Chemical Communications 2012,48,964-966.
    91. Hu, N.; Wang, Y.; Chai, J.; Gao, R.; Yang, Z.; Kong, E.S.-W.; Zhang, Y. Gas sensor based on p phenylenediamine reduced graphene oxide. Sensors and Actuators B-Chemical 2012, 163,107-114.
    92. Vergara, A.; Calavia, R.; Maria Vazquez, R.; Mozalev, A.; Abdelghani, A.; Huerta, R.; Hines, E.H.; Llobet, E. Multifrequency Interrogation of Nanostructured Gas Sensor Arrays:A Tool for Analyzing Response Kinetics. Analytical Chemistry 2012,84, 7502-7510.
    93. Wen, W.; He, S.; Li, S.; Liu, M.; Yong, P. Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sensors and Actuators B-Chemical 2007,125,422-427.
    94. Wang, W.; He, S.; Li, S.; Liu, M.; Pan, Y. Advances in SXFA-Coated SAW Chemical Sensors for Organophosphorous Compound Detection. Sensors 2011,11,1526-1541.
    95. Lee, J.H.; Joo, B.S.; Huh, J.S.; Lee, D.D. Fabrication of SAW sensor for detecting chemical agent. Rare Metal Materials and Engineering 2006,35,433-435.
    96. Mohan, T.; Spirk, S.; Kargl, R.; Doliska, A.; Ehmann, H.M.A.; Koestler, S.; Ribitsch, V.; Stana-Kleinschek, K. Watching cellulose grow-Kinetic investigations on cellulose thin film formation at the gas-solid interface using a quartz crystal microbalance with dissipation (QCM-D). Colloids and Surfaces a-Physicochemical and Engineering Aspects 2012,400,67-72.
    97. Yang, M.; He, J. Tailoring the structure of metal oxide nanostructures towards enhanced sensing properties for environmental applications. Journal of Colloid and Interface Science 2012,368,41-48.
    98. Lieberzeit, P.A.; Aftal, A.; Rehman, A.; Dickert, F.L. Nanoparticles for detecting pollutants and degradation processes with mass-sensitive sensors. Sensors and Actuators B-Chemical 2007,127,132-136.
    99. Shekhah, O.; Liu, J.; Fischer, R.A.; Woell, C. MOF thin films:existing and future applications. Chemical Society Reviews 2011,40,1081-1106.
    100. Zheng, J.B.; Li, G.; Ma, X.F.; Wang, Y.M.; Wu, G.; Cheng, Y.N. Polyaniline-Ti02 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies. Sensors and Actuators B-Chemical 2008,133,374-380.
    101. Mustafa, G.; Hussain, M.; Iqbal, N.; Dickert, F.L.; Lieberzeit, P.A. Quartz crystal microbalance sensor based on affinity interactions between organic thiols and molybdenum disulfide nanoparticles. Sensors and Actuators B-Chemical 2012,162, 63-67.
    102. Zheng, Q.; Zhu, Y.; Xu, J.; Cheng, Z.; Li, H.; Li, X. Fluoroalcohol and fluorinated-phenol derivatives functionalized mesoporous SBA-15 hybrids:high-performance gas sensing toward nerve agent. Journal of Materials Chemistry 2012,22,2263-2270.
    103. Yang, M.; He, J.; Hu, X.; Yan, C.; Cheng, Z. CuO Nanostructures As Quartz Crystal Microbalance Sensing Layers for Detection of Trace Hydrogen Cyanide Gas. Environmental Science & Technology 2011,45,6088-6094.
    104. Matsuguchi, M.; Kadowaki, Y.; Tanaka, M. A QCM-based NO2 gas detector using morpholine-functional cross-linked copolymer coatings. Sensors and Actuators B-Chemical 2005,108,572-575.
    105. Zhang, G.-Y.; Xu, Y.-Y.; Gao, D.-Z.; Sun, Y.-Q. alpha-Fe2O3 nanoplates:PEG-600 assisted hydrothermal synthesis and formation mechanism. Journal of Alloys and Compounds 2011,509,885-890.
    106. Li, Y.; Guo, Y.; Tan, R.; Cui, P.; Li, Y.; Song, W. Synthesis of SnO2 nano-sheets by a template-free hydrothermal method. Materials Letters 2009,63,2085-2088.
    107. Liu, G.; Deng, Q.; Wang, H.; Ng, D.H.L.; Kong, M.; Cai, W.; Wang, G. Micro/nanostructured alpha-Fe2O3 spheres:synthesis, characterization, and structurally enhanced visible-light photocatalytic activity. Journal of Materials Chemistry 2012,22, 9704-9713.
    108. Kanade, K.G.; Baeg, J.O.; Apte, S.K.; Prakash, T.L.; Kale, B.B. Synthesis and characterization of nanocrystallined zirconia by hydrothermal method. Materials Research Bulletin 2008,43,723-729.
    109. Sheng, J.; Zhang, S.; Tong, Y.; Liu, Y.; Sun, W.D. Surfactant assisted synthesis and characterization of La2O3-Fe2O3 core-shell composite nanostructures. Journal of Alloys and Compounds 2009,473,477-482.
    110. Al-Hazmi, F.; Alnowaiser, F.; Al-Ghamdi, A.A.; Al-Ghamdi, A.A.; Aly, M.M; Al-Tuwirqi, R.M.; El-Tantawy, F. A new large-Scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties. Superlattices and Microstructures 2012,52, 200-209.
    111. Fan, G.; Wang, Y.; Hu, M.; Luo, Z.; Li, G. Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Measurement Science & Technology 2011,22,045203.
    112. Brezesinski, K.; Haetge, J.; Wang, J.; Mascotto, S.; Reitz, C.; Rein, A.; Tolbert, S.H.; Perlich, J.; Dunn, B.; Brezesinski, T. Ordered Mesoporous alpha-Fe2O3 (Hematite) Thin-Film Electrodes for Application in High Rate Rechargeable Lithium Batteries. Small 2011,7,407-414.
    113. Pant, P.; Naik, B.D.; Ghosh, N.N. Synthesis of alpha-Fe2O3 nano powder by simple chemical method. Materials Technology 2009,24,213-216.
    114. Bagheri-Mohagheghi, M.M.; Shahtahmasebi, N.; Alinejad, M.R.; Yousseffi, A.; Shokooh-Saremi, M. The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing-complexing sol-gel method. Physica B-Condensed Matter 2008,403, 2431-2437.
    115. Lee, J.H. Gas sensors using hierarchical and hollow oxide nanostructures:Overview. Sensors and Actuators B-Chemical 2009,140,319-336.
    116. Pradhan, G.K.; Parida, K.M. Fabrication, Growth Mechanism, and Characterization of alpha-Fe2O3 Nanorods. Acs Applied Materials & Interfaces 2011,3,317-323.
    117. Zhu, L.-P.; Liao, G.-H.; Bing, N.-C.; Zhao, X.; Gu, Y.-Y. Synthesis of monodisperse shuttle-like alpha-Fe2O3 nanorods via the EDA-assisted method. Materials Letters 2011, 65,1287-1290.
    118. Zink, N.; Emmerling, F.; Haeger, T.; Panthoefer, M.; Tahir, M.N.; Kolb, U.; Tremel, W. Low temperature synthesis of monodisperse nanoscaled ZrO2 with a large specific surface area. Dalton Transactions 2013,42,432-440.
    119. Dhage, S.R.; Gaikwad, S.P.; Samuel, V.; Ravi, V. Synthesis of nanocrystalline SnO2 powder at 100 degrees C. Bulletin of Materials Science 2004,27,221-222.
    120. Chen, T.-Y.; Fung, K.-Z. Synthesis of and densification of oxygen-conducting La0.8Sr0.2Ga0.8Mg0.2O2.8 nano powder prepared from a low temperature hydrothermal urea precipitation process. Journal of the European Ceramic Society 2008,28,803-810.
    121. Jin, D.; Gu, X.; Yu, X.; Ding, G.; Zhu, H.; Yao, K. Hydrothermal synthesis and characterization of hexagonal Mg(OH)2 nano-flake as a flame retardant. Materials Chemistry and Physics 2008,112,962-965.
    122. Alavi, M.A.; Morsali, A. Syntheses and characterization of Mg(OH) 2and MgO nanostructures by ultrasonic method. Ultrasonics Sonochemistry 2010,17,441-446.
    123. Liang, C.D.; Yuan, C.Y.; Warmack, R.J.; Barnes, C.E.; Dai, S. Ionic liquids:A new class of sensing materials for detection of organic vapors based on the use of a quartz crystal microbalance. Analytical Chemistry 2002,74,2172-2176.
    124. Basova, T.V.; Tasaltin, C.; Gurek, A.G.; Ebeoglu, M.A.; Ozturk, Z.Z.; Ahsen, V. Mesomorphic phthalocyanine as chemically sensitive coatings for chemical sensors. Sensors and Actuators B-Chemical 2003,96,70-75.
    125. Ding, B.; Kim, J.H.; Miyazaki, Y.; Shiratori, S.M. Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sensors and Actuators B-Chemical 2004,101,373-380.
    126. Koshets, I.A.; Kazantseva, Z.I.; Shirshov, Y.M.; Cherenok, S.A.; Kalchenko, V.I. Calixarene films as sensitive coatings for QCM-based gas sensors. Sensors and Actuators B-Chemical 2005,106,177-181.
    127. Consales, M.; Campopiano, S.; Cutolo, A.; Penza, M.; Aversa, P.; Cassano, G.; Giordano, M.; Cusano, A. Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: Performances analysis. Sensors and Actuators B-Chemical 2006,118,232-242.
    128. Bunte, G.; Huerttlen, J.; Pontius, H.; Hartlieb, K.; Krause, H. Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Analytica Chimica Acta 2007,597,49-56.
    129. Melegari, M.; Suman, M.; Pirondini, L.; Moiani, D.; Massera, C.; Ugozzoli, F.; Kalenius, E.; Vainiotalo, P.; Mulatier, J.-C.; Dutasta, J.-P.; Dalcanale, E. Supramolecular sensing with phosphonate cavitands. Chemistry-a European Journal 2008,14,5772-5779.
    130. Lee, D.; Yoo, M.; Seo, H.; Tak, Y.; Kim, W.-G.; Yong, K.; Rhee, S.-W.; Jeon, S. Enhanced mass sensitivity of ZnO nanorod-grown quartz crystal microbalances. Sensors and Actuators B-Chemical 2009,135,444-448.
    131. Acikbas, Y.; Capan, R.; Erdogan, M.; Yukruk, F. Thin film characterization and vapor sensing properties of a novel perylenediimide material. Sensors and Actuators B-Chemical 2011,160,65-71.
    132. Lee, W.S.; Lee, S.C.; Lee, S.J.; Lee, D.D.; Huh, J.S.; Jun, H.K.; Kim, J.C. The sensing behavior of SnO2-based thick-film gas sensors at a low concentration of chemical agent simulants. Sensors and Actuators B-Chemical 2005,108,148-153.
    133. Lee, W.S.; Choi, H.Y.; Lee, S.C.; Lee, S.J.; Lee, D.D.; Huh, J.S.; Kim, J.C. Recoverable SnO2-based sensors promoted with MoO3 and Sb2O3 for the detection of DMMP. Rare Metal Materials and Engineering 2006,35,155-156.
    134. Lee, S.C.; Choi, H.Y.; Lee, W.S.; Lee, S.J.; Kim, S.Y.; Ragupathy, D.; Lee, D.D.; Kim, J.C. Improvement of Recovery of SnO2-Based Thick Film Gas Sensors for Dimethyl Methylphosphonate (DMMP) Detection. Sensor Letters 2011,9,101-105.
    135. Lee, S.C.; Choi, H.Y.; Lee, S.J.; Lee, W.S.; Huh, J.S.; Lee, D.D.; Kim, J.C. The development of SnO2-based recoverable gas sensors for the detection of DMMP. Sensors and Actuators B-Chemical 2009,137,239-245.
    136. Wei, L.; Shi, D.; Ye, P.; Dai, Z.; Chen, H.; Chen, C.; Wang, J.; Zhang, L.; Xu, D.; Wang, Z.; Zhang, Y. Hole doping and surface functionalization of single-walled carbon nanotube chemiresistive sensors for ultrasensitive and highly selective organophosphor vapor detection. Nanotechnology 2011,22.
    137. Kanan, S.M.; Tripp, C.P. An infrared study of adsorbed organophosphonates on silica:A prefiltering strategy for the detection of nerve agents on metal oxide sensors. Langmuir 2001,17,2213-2218.
    138. Brunol, E.; Berger, F.; Fromm, A.; Planade, R. Detection of dimethyl methylphosphonate (DMMP) by tin dioxide-based gas sensor:Response curve and understanding of the reactional mechanism. Sensors and Actuators B-Chemical 2006,120,35-41.
    139. Huang, J.; Miragliotta, J.; Becknell, A.; Katz, H.E. Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection. Journal of the American Chemical Society 2007,129,9366-9376.
    140. Ruminski, A.M.; Moore, M.M.; Sailor, M.J. Humidity-Compensating Sensor for Volatile Organic Compounds Using Stacked Porous Silicon Photonic Crystals. Advanced Functional Materials 2008,18,3418-3426.
    141. Du, X.; Wang, Z.; Huang, J.; Tao, S.; Tang, X.; Jiang, Y. A new polysiloxane coating on QCM sensor for DMMP vapor detection. Journal of Materials Science 2009,44, 5872-5876.
    142. Berger, F.; Brunol, E.; Fromm, M.; Planade, R. Detection of dimethyl methylphosphonate (DMMP) by tin dioxide-based gas sensor:response curve and understanding of the reactional mechanism. Sensors and Actuators B (Chemical) 2006,120,35-41.
    143. Kaviyarasu, K.; Devarajan, P.A.; Xavier, S.S.J.; Thomas, S.A.; Selvakumar, S. One Pot Synthesis and Characterization of Cesium Doped SnO2 Nanocrystals via a Hydrothermal Process. Journal of Materials Science & Technology 2012,28,15-20.
    144. Han, C.H.; Han, S.D.; Singh, I.; Toupance, T. Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor. Sensors and Actuators B-Chemical 2005,109, 264-269.
    145. Aizawa, H.; Kawashima, S.; Kurosawa, S.; Noda, K.; Fujil, T.; Hirata, M. Synthesis and characterization of plasma-polymerized tert-butylacrylate films. Thin Solid Films 2007, 575,4141-4147.
    146. Teng, X.W.; Yang, H. Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles. Journal of the American Chemical Society 2003,125,14559-14563.
    147. Lou, X.W.; Yuan, C.; Archer, L.A. Double-walled SnO2 nano-cocoons with movable magnetic cores. Advanced Materials 2007,19,3328-+.
    148. Yoshimura, M.; Somiya, S. Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia. Materials Chemistry and Physics 1999,61,1-8.
    149. Liu, R.M.; Ma, G.L.; Zhou, L.; Chen, R. Hydrothermal synthesis of (ZrO2)(0.86)(SM2O3)(0.14) nano-powders and. electrical properties of its sinter. Acta Chimica Sinica 2005,63,491-496.
    150. Hayashi, H.; Ueda, A.; Suino, A.; Hiro, Y.; Hakuta, Y. Hydrothermal synthesis of yttria stabilized ZrO2 nanoparticles in subcritical and supercritical water using a flow reaction system. Journal of Solid State Chemistry 2009,182,2985-2990.
    151. Wang, Z.; Tao, D.; Guo, G.; Jin, S.; Wei, F.; Qian, W.; Hong, S.; Guo, J. Synthesis of dispersed ZrO2 nano-laminae composed of ZrO2 nanocrystals. Materials Letters 2006,60, 3104-3108.
    152. Ai, D.S.; Kang, S.H. Synthesis of 3Y-ZrO2 nano-powders via a W/O emulsion. Ceramics International 2004,30,619-623.
    153. Guo, Z.; Jiang, Z.-W.; Chen, X.; Sun, B.; Li, M.-Q.; Liu, J.-H.; Huang, X.-J. Novel cocoon-like Au/La2O3 nanomaterials:synthesis and their ultra-enhanced cataluminescence performance to volatile organic compounds. Journal of Materials Chemistry 2011,21,1874-1879.
    154. Sheng, J.; Zhang, S.; Tong, Y.; Liu, Y.; Sun, W. Surfactant assisted synthesis and characterization of La2O3-Fe2O3 core-shell composite nanostructures. Journal of Alloys and Compounds 2009,473,477-482.