乙醇氧化羰基化反应Cu-分子筛催化剂可控制备与载体效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二乙酯(DEC)作为环境友好的化学品,可用作有机合成中间体、锂电池电解液及油品添加剂等,应用前景广阔。氧化羰基化法合成DEC工艺符合绿色化学的原则,因此受到了愈来愈多的关注。Cu-分子筛催化剂用于乙醇氧化羰基化合成DEC反应,虽能避免氯流失的问题,但催化剂活性、选择性均有待提高,同时分子筛载体对活性组分的作用不明确,活性物种的形成和性质尚需深入研究。本论文考察了Cu-分子筛催化剂制备方法和载体效应对活性物种形成和催化剂性能的影响,初步提出了氧化羰基化反应Cu-分子筛催化剂的可控制备方案。
     分子筛载体的Br nsted酸位是影响氧化羰基化反应的首要因素。分别研究了硅铝组成的Y分子筛和β分子筛钝化前后催化剂物化性质的变化规律,通过吡啶吸附红外和活性评价建立了Br nsted酸位与DEC生成的量化关系。CO吸附红外结果表明,Br nsted酸位的分布会影响Cu活性物种的位置及形式,进而影响催化活性。
     孔道结构限制是除酸性外影响氧化羰基化反应的另一重要因素。对Y分子筛进行碱处理,考察其结构性质、酸性的变化规律及对催化活性的影响。结果发现,适当浓度的碱处理可在分子筛中产生缺陷位,从而大大促进微波辅助NH4NO3交换过程骨架铝的脱除,成功引入介孔和大孔结构以削弱分子扩散限制。同时超笼中-OH和非骨架铝的增加导致Cu活性位数量的增加和DEC收率的提高。
     结合Y、β分子筛表面酸性和孔道结构的优势,采用预置晶种法成功制备了Y-β复合分子筛,通过多种表征手段结合,证明了其兼具Y、β两种分子筛的结构特征。对合成工艺条件进行考察发现,晶化时间、凝胶硅铝组成和碱度影响着复合分子筛中两种晶相的比例,最终导致催化活性的差异。
     综合考虑酸性和扩散限制的影响,采用Al(NO3)3对MCM-41全硅介孔分子筛进行改性,表征结果表明Al原子的引入对分子筛规整有序的孔道结构影响甚小,却明显提高了载体表面Br nsted酸位的数量,促进了CuCl在MCM-41孔道内的高度分散,从而提升了催化剂性能。
     为彻底消除固体离子交换制备过程中Cl元素的影响,首次以蒸氨法制备CuY催化剂。研究表明,惰性气氛的焙烧是Cu+与分子筛骨架结合形成反应活性中心的必要条件。前驱体对催化剂的结构、化学性质影响显著。铜物种的分散度和价态与DEC收率密切相关,而中强酸位则导致副产物DEE的生成。过量的CuOx物种会导致孔道堵塞及活性位数量减少,从而不利于反应活性的提高。
Diethyl carbonate(DEC), as an eco-friendly chemical, is gaining popularitybecause of burgeoning applications in chemical synthesis and lithium batteryelectrolytes, oxygenated fuel additive, etc. The direct synthesis of DEC throughoxidative carbonylation has attracted more attentions concerned within the frame ofgreen chemistry. Although utilization of Cu-doped zeolite catalysts instead of Wackertype catalyst can resolve the deactivation of catalyst and corrosion due to loss ofchlorine, the activity and selectivity of this catalyst system still need improvement forfurther industrial applications. Furthermore, the effect of supports on formation andproperties of active species need further investigation for understanding therelationship between structure and performance. This dissertation focuses onunderstanding of the support effect on Cu active species of Cu-doped zeolite and itscatalytic performance in oxidative carbonylation, aiming to realize controllablefabrication of Cu-zeolite catalyst.
     In order to eliminate the influences of channel structure, faujasite with variousSiO2/Al2O3ratios and Hβ before and after passivation were investigated for DECsynthesis. Combined with pyridine-adsorption IR and catalytic measurements, aquantitative relationship between amount of Br nsted acidic sites and catalyticactivities for oxidative carbonylation of ethanol has been established. CO-adsorptionIR suggested that the location of Cu active species was influenced by the distributionof Br nsted acidic sites, which also played an important role in catalytic performanceof oxidative carbonylation.
     NaY was modified with NaOH solutions followed by ion exchange with NH4+toHY. The textural and acidic properties of NaY and its effect on catalytic activity of thecorresponding CuY catalyst were investigated. Alkaline treatment with appropriateconcentration generated defects in the zeolite framework and promoted dealuminationduring ion exchange procedure assisted by microwave radiation, which resulted in thecreation of meso-and macropores in zeolite Y and benefited for the catalyticperformance. In addition, the increased amount of hydroxyl group in supercages andextraframework Al species favored formation of Cu active sites and further yield ofDEC.
     Y-β composite zeolite was synthetized using preset crystal seeds method. The characterization results demonstrated the Y-β composite zeolite had the structuralfeature of both Y and β instead of a physical mixture. Investigation of preparationconditions indicated that crystallization time, composition and alkalinity in gelaffected the proportion of Y and β in composite zeolite, which had an impact on DECproduction.
     By introduction of aluminum into mesoporous silica MCM-41, the amount ofBr nsted acidic sites was improved without change in ordered channel structure,which contributed to dispersion of CuCl and further catalytic performance.
     Preparation methods dominated the activity of CuY in oxidative carbonylation.Compared to other samples, CuY prepared by ammonia evaporation method exhibitedthe optimal catalytic properties. Thermal treatment in inert atmosphere is necessaryfor coordination of Cu+to lattice oxygen of zeolite framework. It is confirmed that thetextural properties, chemical states of active sites and acidity of CuY catalysts wereprofoundly affected by the kinds of copper precursors. Dispersion and valence of Cuspecies related to DEC yield, while moderate acid sites were responsible for DEEproduction. Excess CuOxaggregates resulted in an obvious decrease of Cu+content,surface area and pore volume, which generated a deterioration of DEC selectivity andethanol conversion.
引文
[1] Leino E., M ki-Arvela P., Eta V., Murzin D.Y., Salmi T., Mikkola J.P.,Conventional synthesis methods of short-chain dialkylcarbonates and novelproduction technology via direct route from alcohol and waste CO2, AppliedCatalysis A: General,2010,383:1-13.
    [2] Huang Z.H., Jiang D.M., Miao H., Wang X.B., Ren Y., Li W., Combustioncharacteristics of a compression ignition engine fuelled with diesel–ethanolblends, Proceedings of the Institution of Mechanical Engineers, Part D: Journalof Automobile Engineering,2008,222:265-274.
    [3] Zhang P.B., Zhang Z., Wang S.P., Ma X.B., A new type of catalyst PdCl2/Cu-HMSfor synthesis of diethyl carbonate by oxidative carbonylation of ethanol,Catalysis Communications,2007,8:21-26.
    [4] Nagasubramanian G., Doughty. D., Improving the interfacial resistance inlithium cells with additives, Journal of Power Sources,2001,96:29-32.
    [5]陈兴权,高飞,徐崇福, PdCl2-CuCl2/AC催化乙醇氧化羰化合成碳酸二乙酯工艺条件的研究,精细化工,2006,23:817-821.
    [6] Muskat I.E., Strain F., US Patent,1941,2379250
    [7] Miyazaki H., Shiomi Y., Fujitus S., Masunaga K., Yanagisawa H., Process for thepreparation of oxalic acid diesters, US Patent,1983,4384133.
    [8]郝翠英, CO与亚硝酸甲酯低压气相合成碳酸二甲酯Pd/NaY催化剂的研究,天津大学,2010.
    [9]肖雪路,韩媛媛,蔡清海,二氧化碳与甲醇合成碳酸二甲酯反应的热力学探讨,天然气化工,2007,32:34-37.
    [10] Peng W., Zhao N., Xiao F., Wei W., Sun Y., Recent progress in phosgene-freemethods for synthesis of dimethyl carbonate, Pure and Applied Chemistry,2012,84:603-620.
    [11] Keller N., Rebmann G., Keller V., Catalysts, mechanisms and industrial processesfor the dimethylcarbonate synthesis, Journal of Molecular Catalysis A: Chemical,2010,317:1-18.
    [12] Choi J.C., He L.N., Yasuda H., Sakakura T., Selective and high yield synthesis ofdimethyl carbonate directly from carbon dioxide and methanol, Green Chemistry,2002,4:230-234.
    [13] Tomishige K., Kunimori K., Catalytic and direct synthesis of dimethyl carbonatestarting from carbon dioxide using CeO2-ZrO2solid solution heterogeneouscatalyst: effect of H2O removal from the reaction system, Applied Catalysisa-General,2002,237:103-109.
    [14]赵艳敏,刘绍英,王公应,李石新,薛援,尿素法合成碳酸二甲酯的研究进展,化工进展,2004,23:1049-1051.
    [15] Romano U.T.R., Cipriani G, Method for the preparation of esters of carbonic acid,US Patent,1978,4218391.
    [16] Paret G., Donati G., Ghirardini M., Dimethyl carbonate prepn.-in reactor havingtwo parallel vertical tubes, fresh and recycled gases being fed to the basis of one,in, Enichem Synthesis Spa (Enie).
    [17]马新宾,黄守莹,王胜平,张萍波,氧化羰基化法合成有机碳酸酯的研究进展,石油化工,2010,39:697-705.
    [18]李光兴朱治良,许汉昌,甲醇液相氧化羰基合成碳酸二甲酯研究,华中理工大学学报,1996,24:105-108.
    [19] Mo W.L., Xiong H., Li T., Guo X.C., Li G.X., The catalytic performance andcorrosion inhibition of CuCl/Schiff base system in homogeneous oxidativecarbonylation of methanol, Journal of Molecular Catalysis a-Chemical,2006,247:227-232.
    [20] Mo W.L., Liu H.T., Xiong H., Li M., Li G.X., Preparation ofCuCl/1,10-phenanthroline immobilized on polystyrene and catalytic performancein oxidative carbonylation of methanol, Applied Catalysis A-General,2007,333:172-176.
    [21] Xiong H., Mo W.L., Hu J.L., Bai R.X., Li G.X., CuCl/phen/NMI in homogeneouscarbonylation for synthesis of diethyl carbonate: Highly active catalyst andcorrosion inhibitor, Industrial&Engineering Chemistry Research,2009,48:10845-10849.
    [22] Hu J.C., Cao Y., Yang P., Deng J.F., Fan K.N., A novel homogeneous catalystmade of poly(N-vinyl-2-pyrrolidone)-CuCl2complex for the oxidativecarbonylation of methanol to dimethyl carbonate, Journal of Molecular CatalysisA-Chemical,2002,185:1-9.
    [23] Raab V., Merz M., Sundermeyer J., Ligand effects in the copper catalyzedaerobic oxidative carbonylation of methanol to dimethyl carbonate (DMC),Journal of Molecular Catalysis A-Chemical,2001,175:51-63.
    [24] Chin C.S., Shin D., Won G., Ryu J., Kim H.S., Lee B.G., The effects of catalystcomposition on the catalytic production of dimethyl carbonate, Journal ofMolecular Catalysis A-Chemical,2000,160:315-321.
    [25] Ren J., Li Z., Liu S., Xing Y., Xie K., Silica–titania mixed oxides: Si–O–Ticonnectivity, coordination of titanium, and surface acidic properties, CatalysisLetters,2008,124:185-194.
    [26] Li Z., Meng F., Ren J., Zheng H., Xie K., Surface structure and catalyticperformance of CuCl/SiO2-Al2O3Catalysts for methanol oxidative carbonylation,Chinese Journal of Catalysis,2008,29:643-648.
    [27] Ren J., Liu S., Li Z., Lu X., Xie K., Oxidative carbonylation of methanol todimethyl carbonate over CuCl/SiO2–TiO2catalysts prepared by microwaveheating: The effect of support composition, Applied Catalysis A: General,2009,366:93-101.
    [28]黄海彬,孟凡会,李威渊,阴丽华,李忠,固体酸和固体超强酸负载CuⅠ的催化剂制备与催化合成碳酸二甲酯,太原理工大学学报,2008,39:343-346.
    [29]李忠黄海彬,谢克昌, Cu(I)/SO42-/ZnO和Cu(I)/S2O82-/ZnO催化剂的制备与表征,高等学校化学学报,2008,29:1609-1615.
    [30] Zhu D.J., Mei F.M., Chen L.J., Li T., Mo W.L., Li G.X., Synthesis of dimethylcarbonate by oxidative carbonylation using an efficient and recyclable catalystco-schiff base/zeolite, Energy&Fuels,2009,23:2359-2363.
    [31] G. Lee Curnutt A.D.H., Copper catalyzed oxidative carbonylation of methanol todimethyl carbonate, oxygen complexes and oxygen activation by transitionmetals,1988, Plenum Publishing Co., New York:215.
    [32] Tomishige K., Sakaihori T., Sakai S., Fujimoto K., Dimethyl carbonate synthesisby oxidative carbonylation on activated carbon supported CuCl2catalysts:catalytic properties and structural change, Applied Catalysis A-General,1999,181:95-102.
    [33] V.V. Kriventsov O.V.K., O.V. Kikhtyanin, K.G. Ione, D.I. Kochubey, EXAFSstudy of Cu/C catalyst, Nuclear Instruments and Methods in Physics ResearchSection A: Accelerators, Spectrometers, Detectors and Associated Equipment,2000,448:318-322.
    [34] Yamamoto Y, Matsuzaki T, Ohdan K, Okamoto Y, Structure and electronic stateof PdCl2-CuCl2catalyst supported on activated carbon, Journal of Catalysis,1996,161:577-586.
    [35] Han M.S., Lee B.G., Suh I., Kim H.S., Ahn B.S., Hong S.I., Synthesis ofdimethyl carbonate by vapor phase oxidative carbonylation of methanol overCu-based catalysts, Journal of Molecular Catalysis A-Chemical,2001,170:225-234.
    [36] Punnoose A., Seehra M.S., Dunn B.C., Eyring E.M., Characterization ofCuCl2/PdCl2/activated carbon catalysts for the synthesis of diethyl carbonate,Energy&Fuels,2002,16:182-188.
    [37] Roh N.S., Dunn B.C., Eyring E.M., Pugmire R.J., Meuzelaar H.L.C., Productionof diethyl carbonate from ethanol and carbon monoxide over a heterogeneouscatalytic flow reactor, Fuel Processing Technology,2003,83:27-38.
    [38] Dunn B.C., Guenneau C., Hilton S.A., Pahnke J., Eyring E.M., Production ofdiethyl carbonate from ethanol and carbon monoxide over a heterogeneouscatalyst, Energy&Fuels,2002,16:177-181.
    [39] Briggs D.N., Lawrence K.H., Bell A.T., An investigation of carbon-supportedCuCl2/PdCl2catalysts for diethyl carbonate synthesis, Applied CatalysisA-General,2009,366:71-83.
    [40] Briggs D.N., Bong G., Leong E., Oei K., Lestari G., Bell A.T., Effects of supportcomposition and pretreatment on the activity and selectivity of carbon-supportedPdCunClx catalysts for the synthesis of diethyl carbonate, Journal of Catalysis,2010,276:215-228.
    [41] Yan B., Huang S., Meng Q., Shen Y., Wang S., Ma X., Ordered mesoporouscarbons supported wacker-type catalyst for catalytic oxidative carbonylation,AICHE Journal,2013, DOI:10.1002/aic.14091.
    [42] Wang Y.J., Jiang R.X., Zhao X.Q., Wang S.F., Synthesis of dimethyl carbonate bygas-phase oxidative carbonylation of methanol over activated carbon-supporedcopper catalysts,2000,9:205-211.
    [43]张颖峰,王晖,王波,杨荣榛,董文生,活性炭负载Cu基催化剂催化甲醇氧化羰化合成碳酸二甲酯,化工进展,2011,30:195-198.
    [44]文春梅,王瑞玉,郑华艳,范辉,李忠,醋酸铜热解制备无氯Cu2O/AC催化剂及其催化氧化羰基化,高等学校化学学报,2009,30:2024-2031.
    [45]李忠,文春梅,郑华艳,谢克昌,载体表面性质对Cu2O/AC催化剂结构和活性的影响,高等学校化学学报,2010,31:145-152.
    [46]李忠,朱琼芳,王瑞玉,牛燕燕,郑华艳, Cu/活性炭催化剂:水合肼还原制备及催化甲醇氧化羰基化,无机化学学报,2011,27:718-724.
    [47]李忠,牛燕燕,郑华艳,付廷俊,朱琼芳,阴丽华,表面改性对Cu/活性炭催化剂表面Cu物种和催化活性的影响,无机化学学报,2011,27:1277-1284.
    [48]章日光,郑华艳,王宝俊,李忠, CO和CH3O在Cu2O(111)表面吸附特性及共吸附的理论研究,高等学校化学学报,2010,31:1246-1251.
    [49] Yang P., Cao Y., Hu J.C., Dai W.L., Fan K.N., Mesoporous bimetallicPdCl2-CuCl2catalysts for dimethyl carbonate synthesis by vapor phase oxidativecarbonylation of methanol, Applied Catalysis A-General,2003,241:363-373.
    [50] Zhang P.B., Wang S.P., Chen S., Zhang Z., Ma X.B., The effects of promotersover PdCl2-CuCl2/HMS catalysts for the synthesis of diethyl carbonate byoxidative carbonylation of ethanol, Chemical Engineering Journal,2008,143:220-224.
    [51] King S.T., Oxidative carbonylation of methanol to dimethyl carbonate bysolid-state ion-exchanged CuY catalysts Catalysis Today,1997,33:173-182.
    [52] Lamberti C., Bordiga S., Salvalaggio M., Spoto G., Zecchina A., Geobaldo F.,Vlaic G., Bellatreccia M., XAFS, IR, and UV-Vis Study of the CuI Environmentin CuI-ZSM-5, J. Phys. Chem. B,1997,101:344-360.
    [53] Naik S.D., Doraiswamy L.K., Lamberti C., Spoto G., Scarano D., Paze C.,Salvalaggio M., Bordiga S., Zecchina A., Palomino G.T., D'Acapito F., CuI-Y andCuII-Y zeolites: a XANES, EXAFS and visible-NIR study, Chemical PhysicsLetters,1997,269:500-508.
    [54] Li Z, Xie K.C., Sladeb R.C.T., High selective catalyst CuCl/MCM-41foroxidative carbonylation of methanol to dimethyl carbonate, Applied Catalysis A:General,2001,205:85-92.
    [55] Li Z, Xie K.C., Sladeb R.C.T., Studies of the interaction between CuCl and HYzeolite forpreparing heterogeneous CuIcatalyst, Applied Catalysis A: General,2001,209:107-115.
    [56] Anderson S.A., Root T.W., Investigation of the effect of carbon monoxide on theoxidative carbonylation of methanol to dimethyl carbonate over Cu+X andCu+ZSM-5zeolites, Journal of Molecular Catalysis A: Chemical,2004,220:247-255.
    [57] Anderson S.A., Manthata S., Root T.W., The decomposition of dimethylcarbonate over copper zeolite catalysts, Applied Catalysis A: General,2005,280:117-124.
    [58] Zhang Y., Briggs D., Desmit E., Bell A., Effects of zeolite structure andcomposition on the synthesis of dimethyl carbonate by oxidative carbonylationof methanol on Cu-exchanged Y, ZSM-5, and Mordenite, Journal of Catalysis,2007,251:443-452.
    [59] Zhang P., Huang S., Yang Y., Meng Q., Wang S., Ma X., Effect of SSIE structureof Cu-exchanged β and Y on the selectivity for synthesis of diethyl carbonate byoxidative carbonylation of ethanol: A comparative investigation, Catalysis Today,2010,149:202-206.
    [60] Li Z., Wang R.Y., Zheng H.Y., Xie K.C., Preparation of CuIY catalyst usingCuCl2as precursor for vapor phase oxidative carbonylation of methanol todimethyl carbonate, Fuel,2010,89:1339-1343.
    [61] Richter M., Fait M.J.G., Eckelt R., Schreier E., Schneider M., Pohl M.M., FrickeR., Oxidative gas phase carbonylation of methanol to dimethyl carbonate overchloride-free Cu-impregnated zeolite Y catalysts at elevated pressure, AppliedCatalysis B: Environmental,2007,73:269-281.
    [62] Richter M., Fait M., Eckelt R., Schneider M., Radnik J., Heidemann D., FrickeR., Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-freeCu-precipitated zeolite Y at normal pressure, Journal of Catalysis,2007,245:11-24.
    [63] Dang T.T.H., Bartoszek M., Schneider M., Hoang D.L., Bentrup U., Martin A.,Chloride-free Cu-modified SAPO-37catalyst for the oxidative carbonylation ofmethanol in the gas phase, Applied Catalysis B: Environmental,2012,121-122:115-122.
    [64] Saegusa T., Tsuda T., Isayama K., Reaction of cupric alkoxide and carbonmonoxide, The Journal of Organic Chemistry,1970,35:2976–2978.
    [65] Romano U, Tesel R., Mauri M.M., Rebora P., Synthesis of dimethyl carbonatefrom methanol, carbon monoxide, and oxygen catalyzed by copper compounds,Industrial&Engineering Chemistry Product Research and Development,1980,19:396-403.
    [66] Park E.D., Choi S.H., Lee J.S., Active states of Pd and Cu in carbon-supportedWacker-type catalysts for low-temperature CO oxidation, J. Phys. Chem. B,2000,104:5586-5594.
    [67] Jiang R.X., Wang Y.J., Zhao X.Q., Wang S.F., Jin C.Q., Zhang C.F.,Characterization of catalyst in the synthesis of dimethyl carbonate by gas-phaseoxidative carbonylation of methanol, Journal of Molecular Catalysis a-Chemical,2002,185:159-166.
    [68] Zhang Z., Ma X.B., Zhang J., He F., Wang S.P., Effect of crystal structure ofcopper species on the rate and selectivity in oxidative carbonylation of ethanolfor diethyl carbonate synthesis, Journal of Molecular Catalysis A-Chemical,2005,227:141-146.
    [69] King S.T., Reaction mechanism of oxidative carbonylation of methanol todimethyl carbonate in Cu–Y zeolite, Journal of Catalysis,1996,161:530-538.
    [70] Zhang Y., Bell A.T., The mechanism of dimethyl carbonate synthesis onCu-exchanged zeolite Y, Journal of Catalysis,2008,255:153-161.
    [71] Zheng X.B., Bell A.T., A theoretical investigation of dimethyl carbonatesynthesis on Cu-Y zeolite, Journal of Physical Chemistry C,2008,112:5043-5047.
    [72] Shen Y., Meng Q., Huang S., Wang S., Gong J., Ma X., Reaction mechanism ofdimethyl carbonate synthesis on Cu/β zeolites: DFT and AIM investigations, RscAdvances,2012,2:7109.
    [73] Wang Z.Z., Huang S.Y., Shen Y.L., Wang S.P., Ma X.B., In situ DRIFTS study onthe oxidative carbonylation of methanol to dimethyl carbonate over Cuβ catalyst,Journal of Fuel Chemistry and Technology,2012,40:1212-1221.
    [74] Engeldinger J., Richter M., Bentrup U., Mechanistic investigations on dimethylcarbonate formation by oxidative carbonylation of methanol over a CuY zeolite:an operando SSITKA/DRIFTS/MS study, Physical Chemistry Chemical Physics,2012,14:2183.
    [75] Engeldinger J., Domke C., Richter M., Bentrup U., Elucidating the role of Cuspecies in the oxidative carbonylation of methanol to dimethyl carbonate on CuY:An in situ spectroscopic and catalytic study, Applied Catalysis A: General,2010,382:303-311.
    [76] Itoh H., Oohara T., Watanabe Y., Umino H., Ishigaki S.Y., Process developmentof vapor-phase dimethylcarbonate synthesis using fluidized-bed reactor, KagakuKogaku Ronbunshu,2004,30:262-266.
    [77]常雁红,韩怡卓,王兴葵,杨彩虹,李文彬,甲醇、二甲醚共进料合成碳酸二甲酯,石油化工,2000,29:829-831.
    [78]王文进,方奕文,宋一兵,郭锐华,吴燕青,甲醇、二甲醚共进料气相氧化羰基化合成碳酸二甲酯的热力学分析,天然气化工,2007,32:44-47.
    [79] Zhang P.B., Fan M.M., Jiang P.P., A novel method to reduce the influence ofby-product water on the catalytic performance of PdCl2/Cu-HMS catalysts forthe synthesis of diethyl carbonate, RSC Advances,2012,2:4593-4595.
    [80]徐如人,庞文琴,于吉红,霍启升,陈接胜,分子筛与多孔材料化学.科学出版社:北京2004
    [81] Spoto G., Zecchina A., Bordiga S., Ricchiardi G., Martra G., Cu(I)-ZSM-5zeolites prepared by reaction of H-ZSM-5with gaseous CuCl: Spectroscopiccharacterization and reactivity towards carbon monoxide and nitric oxide,Applied Catalysis B: Environmental,1994,3:151-172.
    [82] Ian J. Drake Y.Z., Daniel Briggs, Bomyi Lim, Tanguy Chau, and Alexis T. Bell,The local environment of Cu+in Cu-Y zeolite and its relationship to the synthesisof dimethyl carbonate, J. Phys. Chem. B,2006,110:11654-11664.
    [83] Palomino G.T., Bordiga S., Zecchina A., Marra G.L., Lamberti C., XRD, XAS,and IR characterization of copper-exchanged Y Zeolite, The Journal of PhysicalChemistry B,2000,104:8641-8651.
    [84] Katada N., Suzuki K., Noda T., Sastre G., Niwa M., Correlation betweenBr nsted Acid Strength and Local Structure in Zeolites, Journal of PhysicalChemistry C,2009,113:19208–19217.
    [85] Huang S., Wang Y., Wang Z., Yan B., Wang S., Gong J., Ma X., Cu-dopedzeolites for catalytic oxidative carbonylation: The role of Br nsted acids, AppliedCatalysis A: General,2012,417-418:236-242.
    [86] G. Ertl H.K., F. Schüth, J. Weitkamp, Handbook of Heterogeneous Catalysis,2008.
    [87] Jacobus C., Jansena E.J.C., Njoa S.L., van Koningsveld H., van Bekkuma H., Onthe remarkable behaviour of zeolite Beta in acid catalysis, Catalysis Today,1997,38:205-212.
    [88] Paul J., Kunkeler D.M., van Bekkum H., Zeolite Beta characterization andpassivation of the external surface acidity, Microporous Materials,1997,11:313-323.
    [89] Jiri Cejka A.C., and Stacey Zones, Zeolites and catalysis synthesis, reactions andapplications,2010.
    [90] Lamberti C., Zecchina A., Groppo E., Bordiga S., Probing the surfaces ofheterogeneous catalysts by in situ IR spectroscopy, Chemical Society Reviews,2010,39:4951.
    [91] Hadjiivanov K., Kn zinger H., FTIR study of CO and NO adsorption andcoadsorption on a Cu/SiO2catalyst: Probing the oxidation state of copper,Physical Chemistry Chemical Physics,2001,3:1132-1137.
    [92] Verboekend D., Pérez-Ramírez J., Design of hierarchical zeolite catalysts bydesilication, Catalysis Science&Technology,2011.
    [93] Svelle S., Sommer L., Barbera K., Vennestr m P.N.R., Olsbye U., Lillerud K.P.,Bordiga S., Pan Y. H., Beato P., How defects and crystal morphology control theeffects of desilication, Catalysis Today,2011,168:38-47.
    [94] ilková N., Bejblová M., Gil B., Zones S.I., Burton A.W., Chen C.Y.,Musilová-Pavla ková Z., Ko ová G., ejka J., The role of the zeolite channelarchitecture and acidity on the activity and selectivity in aromatictransformations: The effect of zeolite cages in SSZ-35zeolite, Journal ofCatalysis,2009,266:79-91.
    [95] Montanari T., Finocchio E., Busca G., Infrared spectroscopy of heterogeneouscatalysts: acidity and accessibility of acid sites of faujasite-type solid acids,Journal of the Physical Chemistry C,2011,115:937-943.
    [96] Eichler U., Br ndle M., Sauer J., Predicting absolute and site specific acidities forzeolite catalysts by a combined quantum mechanics/interatomic potentialfunction approach, Journal of the Physical Chemistry B,1997,101:10035-10050.
    [97] Stephane Kieger,Gerard Delahay B.C.B.N., Selective catalytic reduction ofnitric oxide by ammonia over Cu-FAU catalysts in oxygen-rich atmosphere,Journal of Catalysis,1999,183:267-280.
    [98] Groen J.C., Moulijn J.A., Pérez-Ramírez J., Decoupling mesoporosity formationand acidity modification in ZSM-5zeolites by sequentialdesilication–dealumination, Microporous and Mesoporous Materials,2005,87:153-161.
    [99] Matias P., SáCouto C., Gra a I., Lopes J.M., Carvalho A.P., Ram a Ribeiro F.,Guisnet M., Desilication of a TON zeolite with NaOH: Influence on porosity,acidity and catalytic properties, Applied Catalysis A: General,2011,399:100-109.
    [100] Sato K., Nishimura Y., Matsubayashi N., Imamura M., Shimada H., Structuralchanges of Y zeolites during ion exchange treatment: effects of Si/Al ratio of thestarting NaY, Microporous and Mesoporous Materials,2003,59:133-146.
    [101] González M.D., Cesteros Y., Salagre P., Comparison of dealumination ofzeolites beta, mordenite and ZSM-5by treatment with acid under microwaveirradiation, Microporous and Mesoporous Materials,2011,144:162-170.
    [102] van Laak A.N.C., Sagala S.L., Ze evi J., Friedrich H., de Jongh P.E., de JongK.P., Mesoporous mordenites obtained by sequential acid and alkalinetreatments–Catalysts for cumene production with enhanced accessibility, Journalof Catalysis,2010,276:170-180.
    [103] Ogura M., Shinomiya S.Y., Tateno J., Nara Y., Nomura M., Kikuchi E.,Matsukata M., Alkali-treatment technique-new method for modification ofstructural and acid-catalytic properties of ZSM-5zeolites, Applied Catalysis A:General,2001,219:33-43.
    [104]王增竹,黄守莹,王胜平,马新宾, Y-β复合分子筛的合成、表征和氧化羰基催化性能,化学工业与工程,2002,29:1-6.
    [105]于杰,马波,张志智,凌凤香,张喜文,复合分子筛的合成及表征研究进展,化工进展,2007,26:188-194.
    [106]许一博,孙万付,马波,秦波,张喜文, Y-β复合分子筛甲醇脱水性能的研究,当代化工,2011,40:331-339.
    [107]金昌磊,马波,张喜文,凌凤香,张志智,秦波, Ni-Mo/Y-β催化正辛烷加氢裂化的研究,工业催化,2007,15:24-27.
    [108]杜君,王艳,孟双明,李瑞丰, Y/Beta双微孔复合分子筛的合成、表征及其催化性能,石油学报:石油加工,2010,26:773-778.
    [109]秦波,郭群,张喜文,郑家军,李瑞丰,以高硅NaY为前驱体合成双微孔Y-Beta复合分子筛,石油学报:石油加工,2006,增刊:96-99.
    [110] Dai W, Zhou Y, Li S, Li W, Su W, Sun Y, Thiophene capture with complexadsorbent SBA-15/Cu(I), Industrial&Engineering Chemistry Product Researchand Development,2006,45:7892-7896.
    [111] Wang Y., Yang R.T., Heinzel J.M., Desulfurization of jet fuel JP-5light fractionby MCM-41and SBA-15supported cuprous oxide for fuel cell applications,Industrial&Engineering Chemistry Product Research and Development,2009,48:142-147.
    [112] Du J., Xu H., Shen J., Huang J., Shen W., Zhao D., Catalytic dehydrogenationand cracking of industrial dipentene over M/SBA-15(M=Al, Zn) catalysts,Applied Catalysis A: General,2005,296:186-193.
    [113] Cheralathan K.K., Hayashi T., Ogura M., Post-synthesis coating of alumina onthe mesopore walls of SBA-15by ammonia/water vapour induced internalhydrolysis and its consequences on pore structure and acidity, Microporous andMesoporous Materials,2008,116:406-415.
    [114] Shi Y., Wang S., Ma X., Microwave preparation of Ti-containing mesoporousmaterials. Application as catalysts for transesterification, Chemical EngineeringJournal,2011,166:744-750.
    [115] Mi-Yon Lee D. C.P., Alkylcarbonate synthesis by new catalytic system, Studiesin Surface Science and Catalysis,1991,66:631-640.
    [116] Yin A., Guo X., Fan K., Dai W.L., Influence of copper precursors on thestructure evolution and catalytic performance of Cu/HMS catalysts in thehydrogenation of dimethyl oxalate to ethylene glycol, Applied Catalysis A:General,2010,377:128-133.
    [117] Fei J., Hou Z., Zhu B., Lou H., Zheng X., Synthesis of dimethyl ether (DME) onmodified HY zeolite and modified HY zeolite-supported Cu–Mn–Zn catalysts,Applied Catalysis A: General,2006,304:49-54.
    [118] Sarah C., Larsen A.A., Bell A.T., Reimer J.A., Electron paramagnetic resonancestudies of copper ion-exchanged ZSM-5, Journal of the Physical Chemistry,1994,98:11533-11540.
    [119] Amano F., Tanaka T., Funabiki T., Auto-reduction of Cu(II) species supportedon Al2O3to Cu(I) by thermovacuum treatment, Journal of Molecular Catalysis A:Chemical,2004,221:89-95.
    [120] Palomino G.T., Fisicaro P., Bordiga S., Zecchina A., Oxidation states of copperions in ZSM-5zeolites. a multitechnique investigation, Journal of the PhysicalChemistry B,2000,104:4064-4073.
    [121] Wang F., Lu G., Hydrogen feed gas purification over bimetallic Cu–Pd catalysts–Effects of copper precursors on CO oxidation, International Journal ofHydrogen Energy,2010,35:7253-7260.
    [122] Gong J., Yue H., Zhao Y., Zhao S., Zhao L., Lv J., Wang S., Ma X., Synthesis ofethanol via syngas on Cu/SiO2catalysts with balanced Cu0-Cu+sites, Journal ofthe American Chemical Society,2012,134:13922-13925.
    [123] Chen S., Wang S., Ma X., Gong J., Selective oxidation of methanol todimethoxymethane over bifunctional VOx/TS-1catalysts, ChemicalCommunications,2011,47:9345-9347.