加氢裂化多产中间馏分油分子筛和催化剂的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油资源的短缺和环保法规的日益严格,使石油产品的有效利用和清洁生产倍受关注。加氢裂化作为重油高效催化转化和唯一可直接生产符合欧IV清洁油品标准的加氢技术,开发和应用加氢裂化多产优质中间馏分油(煤油和柴油)型催化剂,一直是石油化工领域的热点之一。目前制备具有适宜酸性、多级孔道结构分子筛和高活性加氢组分是提高加氢裂化催化剂重油转化能力、活性和中间馏分油选择性的关键。本文通过吸收分子筛改性、加氢活性相及介孔材料的最新研究结果,致力于这些关键问题的解决,旨在形成加氢裂化多产中间馏分油分子筛和催化剂“量体裁衣”设计。论文着重研究了大孔改性Y分子筛、催化新材料介孔Al-SBA-15/Y分子筛复合材料的制备及重油加氢裂化性能。系统考察了酸性载体、W-Ni加氢金属组分对催化剂表面性质和催化性能的影响,研究了W-Ni系加氢裂化催化剂的加氢活性相,考察了加氢裂化多产中间馏分油催化剂的重油加氢裂化性能及中间馏分油选择性影响因素。并采用X-射线衍射(XRD)、氮气吸附、透射电镜(TEM)、傅立叶变换红外光谱(FT-IR)、热重-差热分析(TG-DTG)等表征手段,对分子筛和催化剂的结构和性质进行了分析。主要内容包括:
     详细研究了化学和水热处理过程对Y分子筛骨架结构、表面性质和孔结构的影响,探讨了不同化学-水热处理方法Y分子筛二次孔的形成机理和形成规律,采用XRD、氮气吸附、TEM、FT-IR等技术对Y分子筛改性后的产物进行了详细的表征。采用新型化学-水热处理方法制备出了总孔容为0.688mL/g,二次孔孔容为0.548ml/g的大孔改性Y分子筛。以大庆减压馏分油为原料、>350℃馏分油单程转化率为75v%,考察了以大孔改性Y分子筛为载体加氢裂化催化剂的重油加氢裂化性能。研究结果表明,以新型化学-水热处理方法制备出的大孔改性Y分子筛为主要裂化组分的加氢裂化催化剂,具有优异的催化性能,生产中间馏分油的选择性高达80.82%,中间馏分油收率高达64.86 wt%。
     在中等酸性条件下,采用两步法制备了介孔Al-SBA-15/Y分子筛系列复合材料,考察了复合分子筛材料的酸性稳定性,初步探讨了复合分子筛材料的形成机理,并用不同尺度的异丙苯和三异丙探针分子考察了分子筛的酸催化反应性能,同时考察了以介孔Al-SBA-15/Y分子筛为载体加氢裂化催化剂的重油加氢裂化性能。研究结果表明,新型微孔-介孔Al-SBA-15/Y复合分子筛加氢裂化催化剂,同时具备了高水热稳定SBA-15分子筛的均一介孔结构和微孔Y分子筛的酸性特点,在不同尺码探针分子的酸催化反应中,表现出较高的裂化性能;在重油加氢裂化反应中,对大分子烃显示出优异的催化转化能力,可显著降低尾油的BMCI值。
     以大孔改性Y分子筛或介孔Al-SBA-15/Y分子筛复合材料与γ-Al_2O_3、无定形硅铝混合作为催化剂载体,Ni-W为加氢活性组分,考察了酸性组分、Ni/(Ni+W)原子比和助剂对催化剂表面性质和裂化性能的影响。制备了具有适宜酸性、孔结构和高加氢活性的加氢裂化多产中间馏分油催化剂,并用XRD、氮气吸附、SEM、FT-IR、NH_3-TPD等技术对催化剂进行了表征。结果表明,催化剂的酸类型以L酸中心为主,B酸中心较少,主要为弱酸和中强酸。催化剂中2~4nm的孔结构占催化剂总孔容的85%以上,并在2~4nm和4~10nm呈双峰分布。W-Ni加氢活性金属组分在加氢裂化催化剂上分散较好,W-Ni加氢活性金属组分的硫化物,在400~850℃(尤其是400~700℃)易还原。
     以大庆减压馏分油为原料、>350℃馏分油单程转化率为75v%,考察了加氢裂化多产中间馏分油催化剂的活性稳定性和耐氮性。研究结果表明,在1800hr活性稳定性试验中,加氢裂化多产中间馏分油催化剂的中间馏分油选择性大于82%,催化剂的失活速率小于0.013℃/天;在1000hr耐氮性考察试验中,催化剂中间馏分油选择性大于78%,具有很好的活性稳定性、耐氮性和重油加氢裂化性能。
Petroleum resource shortage and recent strict environmental regulations have brought more attention to effective utilization of petroleum products and clean fuel processes and technologies. Hydrocracking is a kind of effective catalytic process for heavy oil conversion and the only technology that can produce clean fuels to meet the Euro IV emission standard. The development and utilization of hydrocracking catalysts for maximizing high quality middle distillates is one of the hot topics in petrochemical industry. The key issue for improving heavy oil conversion ability, activity and middle distillate selectivity of catalysts is to develop the hydrocracking catalysts with suitable acidity, hierachical pore structure zeolites and higher hydrogenation activity components. Based on the latest research results of zeolite modification, hydrogenation active phase characterization and mesoporous material synthesis, the target of this thesis is to achieve a tailored design for hydrocracking catalysts producing maximum middle distillates. Modified large pore Y zeolite and novel catalytic material mesoporous Al-SBA-15/Y zeolite composites were first prepared. Then heavy oil hydrocracking performance of both zeolites and the influences of an acid support and the W-Ni hydrogenation active components on catalyst surface properties and catalytic performance were studied. The W-Ni hydrogenation active phases of catalysts and the influential factors on heavy oil hydrocracking performance and middle distillate selectivity of hydrocracking catalysts were also investigated. Structure and properties of zeolites and catalysts were characterized by XRD, N2 adsorption, TEM, FT-IR, and TG-DTG. The main results are as follows:
     The effects of chemical and hydrothermal treatment methods on Y zeolite framework structure, surface acidity and pore structure during large pore Y zeolite modification procedures were studied. The forming mechanism and forming rules of secondary pores in Y zeolites were discussed. The modified products were then characterized by XRD, N2 adsorption, TEM and FT-IR techniques. Modified large pore Y zeolites with total pore volume of 0.688mL/g and mesopore volume of 0.548mL/g were prepared by novel chemical-hydrothermal treatment methods. Heavy oil hydrocracking performance of the catalyst using modified large pore Y zeolites as support was evaluated by using Daqing VGO (Vaccum Gas Oil) as feedstocks in a pilot hydrogenation unit at a conversion of 75v%. The hydrocracking performance evaluation results revealed that the catalyst using modified large pore Y zeolite prepared by novel method achieved a middle distillate selectivity of 80.82% and a middle distillate yield of 64.86wt%, which showed that the catalyst had more excellent catalytic performance than that using modified Y zeolite prepared by traditional method.
     Mesoporous Al-SBA-15/Yzeolite composites were prepared by a two-step method in moderate acid media and their forming mechanism was discussed. Examined were their acidity stability under different hydrothermal treatment processes, acid catalysis reaction performance using probe molecules of different size, and the catalytic performance of the catalyst using as-prepared materials for hydrocracking heavy oil. The forming mechanism of Al-SBA-15/Yzeolite composites was investigated. Mesoporous Al-SBA-15/Yzeolite composites were characterized by N2 adsorption, XRD and TEM techniques. The catalytic cracking reaction results revealed that Y/Al-SBA-15 composites possessed high catalytic activities in the cracking of both small (cumene) and large molecules (TIPB), which might be related to some large pores and strong acidic sites in the Y/Al-SBA-15 composites. More importantly, for the hydrocracking of vacuum gas oils, the lower BMCI value of the tail oil showed that Y/Al-SBA-15 composite catalysts have significantly superior performance on the conversion of large hydrocarbon molecules.
     Hydrocracking catalysts for maximizing middle distillates were prepared using modified large pore Y zeolite or mesoporous Al-SBA-15/ Y composites as main acid components,γ-Al2O3 and amorphous silica-alumina as carrier, and Ni-W as catalytic active phases. The effects of acid components, Ni/( Ni+W ) atomic ratio and promoters on catalyst surface properties and hydrogenation activity were examined and characterized. Characterization results of hydrocracking catalysts for maximizing middle distillates showed that the catalyst acidity types were mainly L acid sites with few B acid sites by Py-IR, and more weak acid sites and less strong acid sites at 150-400℃by NH3-TPD. The proportion of catalyst pore size of 2-4 nm was more than 85%, and the pore size exhibited bimodal distribution at 2-4 nm and 4-10 nm by N2 adsorption. W-Ni hydrogenation active components showed excellent dispersion on the hydrocracking catalyst by XRD and SEM-EDS. Hydrogenation active phases were W-Ni sulfide species, which were the reduction phases at 400 - 850oC (especially 400 - 700oC) by O2-TG characterization.
     The catalyst performance was evaluated by both 1800hr activity and stability test and 1000hr nitrogen tolerance test using Daqing VGO as feedstocks in the pilot hydrogenation unit at a conversion of 75v%. The deactivation rate of the catalyst was 0.013℃/day, and middle distillate selectivity was over 82% and 78% respectively, showing the catalyst’s good activity and stability, as well as good nitrogen tolerance performance and heavy oil catalytic performance.
引文
[1]候芙生.优化炼油工艺过程发展中国炼油工业[J].石油学报(石油加工),2005,21(3): 7-16
    [2]张德义.近年来世界炼油工业发展动态及未来趋势[J].当代石油化工,2005,13(8):5-11
    [3] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359 (6397): 710-712
    [4] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis[J]. Chem. Rev, 1997, 97(6): 2373-2419
    [5] Ying J. Y., Mehner C. P., Wong M. S. Synthesis and applications of supramolecular-templated mesoporous materials [J]. Angew. Chem. Int. Ed, 1999, 38(1-2):56-67
    [6] Kerby M C., Degnan J. T. F., Marler D. O., etal. Advanced catalyst technology and applications for high quality fuels and lubricants[J]. Catalysis Today, 2005,104 (1): 55–63
    [7]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社, 2001,98-100
    [8]董松涛.加氢裂化催化剂选择性的研究[D].北京:中国石油化工研究院,2001
    [9]侯祥麟.中国炼油技术[M].北京:中国石化出版社, 2001,261-164
    [10]胡永康.国外馏分油加氢裂化催化剂的发展[A].加氢裂化协作组第三届年会报告论文集[C],1999,96-112
    [11]关明华.加氢裂化技术最新进展与展望[A].加氢裂化协作组第四届年会报告论文集[C],2001,41-57
    [12]廖健等,姚国欣.国际市场加氢裂化/异构脱蜡技术的新进展[A].加氢裂化协作组第四届年会报告论文集[C],2001,69-84
    [13]黎元生.国外加氢裂化技术进展和分析[A].第五届加氢裂化协作组年会交流资料[C],2003,61-81
    [14] http://www.criterioncatalysts.com/english/pdf/NPRA04_Altrichter.pdf
    [15] http://www.uop.com/objects/Tech%20More%20Spring%2004.postNPRA.Final.pdf
    [16]王凤来,关明华. 4331高活性多产中间馏分油加氢裂化催化剂的研制[J],抚顺烃加工技术,2001(9),6-12
    [17]王凤来,关明华,喻正南,等. FC-16型高活性多产中间馏分油加氢裂化催化剂研制及工业放大[J].抚顺烃加工技术,2003 (3): 1-10
    [18]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社, 2001,159-197
    [19]高兹等.沸石催化与分离技术[M].北京:中国石化出版社,1999,71-81
    [20] Donk S., Janssen A. H., Bitter J. H., et al. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003, 45(2): 297-319
    [21]韩崇仁.环境有好的炼油化工技术[M].北京:中国石化出版社,2003,11-23
    [22] Beck J. S., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992, 114 (27):10834-10843
    [23]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2001,150-159
    [24]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2001,259-279
    [25]万学兵,丁连杰.共胶法系列加氢裂化催化剂生产工艺的开发及工业应用.工业催化,2002,10(1):10-15
    [26]白崎高保,藤堂上之.催化剂制造[M].北京:石油工业出版社,1981,46-65
    [27]中国石油化工总公司.催化加氢技术[M].第二分册.加氢裂化.沈阳;1993:147-161
    [28] Abramova A. V., Slivinskii E. V., Goldfarb Y. Y., et al. Development of efficient zeolite-containing catalysts for petroleum refining and petrochemistry[J]. Kinet & Catal, 2005, 46 (5): 758-769.
    [29] Maher P. K., Baltimore, McDaniel C. V. Zeolite Z-14US and Method of Preparation Thereof[P]. U.S.P. 3293192, 1966
    [30] Mc Daniel C. V., Laurel, Maher P. K. Stabilized Zeolites[P]. U.S.P. 3449070, 1969
    [31] Ward J. W. Thermal decomposition of ammonium Y zeolite[J]. J. Catal, 1970, 18(3): 348-351
    [32] Fleisch T. H., Meyers B. L., Ray G. J., et al. Hydrothermal Dealumination of Faujasites[J].J. Catal, 1986, 99(1): 117-125
    [33] Wang Q. L., Giannetto G., Torrealba M. Perot G. Kappenstein C, Guisnet M. Dealumination of zeolites II. Kinetic study of the dealumination by hydrothermal treatment of a NH4NaY zeolite[J]. J. catal, 1991, 130 (2): 459-470
    [34] Engelhardt G., Lohse U., PatzelováV., et al. High resolution 29 Si NMR of dealuminated Y-zeolites. 1. The dependence of the extent of ammonium exchange and the temperature and water vapour pressure of the thermochemical treatment[J]. Zeolites, 1983, 3: 233-238
    [35] Engelhardt G., Lohse U., PatzelováV., et al. High resolution 29Si NMR of dealuminated Y-zeolites. 2. Silicon, aluminium ordering in the tetrahedral zeolite lattice[J]. Zeolites, 1983, 3(3): 239-243
    [36]董松涛,李宣文,李大东,等.水热处理USY二次孔形成规律研究[J].物理化学学报,2002, 18(3) :201-206
    [37] Wouters B. H., Chen T., Grobet P. J. Steaming of Zeolite Y: Formation of Transient Al Species[J]. J. Phys. Chem. B, 2001, 105 (6): 1135-1139
    [38] Ward J. W. Hydrogentive Conversion processes and catalyst for use therein[P]. US: 3835027, 1974-09-10
    [39] Ward J. W. Hydrocracking process with stabilized y-zeolite catalysts[P]. US: 3897327, 1975-07-2
    [40] Wang Q. L., Giannetto G., Torreaba M., et al. M. Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking[J]. J. catal, 1991, 130 (2):471-482
    [41] Fejes P., Hannus I., Kiricsi I. Dealumination of zeolites with phosgene[J]. Zeolites, 1984, 4(1):73-76.
    [42] Lok B. M, Izod T. P. J. Modification of molecular sievesl-direct fluorination[J]. Zeolites, 1982, 2 (1):66-67
    [43] Beyer H. K., Belenykaja I. A New Method for The Dealumination of Faujasite-type Zeolites[J]. Stud. Surf. Sci. Catal., 1980, 5: 203-210
    [44] Beyer H. K., Belenykaja I. M., Hange F., et al. Preparation of High-silica Faujasites by Treatment withSilicon Tetrachloride[J]. J. Chem. Soc., Faraday Trans.1, 1985, 81(11): 2889-2901
    [45] Stephen J. D., Jong R. S., Fritz P. O., et al. Lunsford Acid catalysis by dealuminated zeolite-Y : I. Methanol dehydration and cumene dealkylation[J]. J. catal, 1986, 101.(1): 132-141
    [46] KubelkováL., Beran S., Malecka A., et al. Acidity of modified Y zeolites: Effect of nonskeletal Al, formed by hydrothermal treatment, dealumination with SiCl4, and cationic exchange with Al[J]. Zeolites, 1989, 9 (1):12-17
    [47] Anderson M. W., Klinowski J. Zeolites treated with silicon tetrachloride vapour. IV. Acidity[J]. Zeolites, 1986, 6 (6):455-466
    [48] Fritz P. O., Lunsford J. H. The effect of sodium poisoning on dealuminated Y-type zeolites[J]. J. catal, 1989, 118 (1):85-98
    [49]徐恒泳,张盈珍,古世鉴,等.脱铝八面沸石的研究I.制备及表征[J].催化学报, 1988, 9 (4): 358-365
    [50]张盈珍,徐恒泳,戚奎华,等.脱铝八面沸石的研究. II.羟基及其酸性[J].催化学报, 1988, 9 (4): 366-372
    [51]徐恒泳,张盈珍,李淑莲,等.脱铝八面沸石的研究. III.稳定性[J].催化学报, 1989, 10 (1): 49-54
    [52]徐国林,徐恒泳,孙希贤,等.脱铝八面沸石的研究. IV.异丙苯催化裂化[J].高等学校化学学报,1991,12(3):368-372
    [53] Lee Edward F. T, Rees Lovat V. C. Dealumination of Sodium Y Zeolite with Hydrochloric Acid[J]. J. Chem. Soc., Faraday Trans.Ⅰ, 1987, 83 (5): 1531-1537
    [54] PatzelováV., DrahorádováE., Tvar kováZ., et al. OH groups in hydrothermally treated dealuminated Y zeolites[J]. Zeolites, 1989, 9 (1): 74-77
    [55] Breck D. W., Blass H., Skeels G. W. Silicon substituted zeolite compositions and process for preparing same[P]. U.S: 4503023, 1985-05-05
    [56] Hinchey R. J., Caglione A. J. Treatment process for removing fluoride impurities from aluminosilicates[P]. US: 4597956, 1986-07-01
    [57] Skeels G. W., Breck D. W., Blass H. Silicon substituted zeolite compositions and process for preparing same[P]. US: 4610856, 1986-09-09
    [58] Garralón G., Fornés V., Corma A. Faujasites dealuminated with ammonium hexafluorosilicate: Variables affecting the method of preparation[J]. Zeolites, 1988, 8 (4): 268-272
    [59]唐颐,高滋. (NH4)2SiF6去铝补硅法制备富硅Y沸石[J].石油化工,1990, 19(12): 808-813
    [60]谢鹏,张盈珍,郑禄彬.八面沸石用(NH4)2SiF6脱铝补硅的研究Ⅰ.反应条件的考察与样品的XRD结果[J].催化学报,1991, 12(1): 32-37
    [61]谢鹏,张盈珍,郑禄彬.八面沸石用(NH4)2SiF6脱铝补硅的研究Ⅱ. NaY及不同交换度(NH4Na)Y的脱铝[J].催化学报,1992, 13 (4):304-307
    [62]谢鹏,张盈珍,李淑莲,等.八面沸石用(NH4)2SiF6脱铝补硅的研究Ⅲ.脱铝补硅沸石的性能[J].催化学报,1993, 14(1): 69-72 113
    [63]谢鹏,张盈珍,郑禄彬.八面沸石用(NH4)2SiF6脱铝补硅的研究Ⅳ.反应机理[J].催化学报,1993, 14(4): 300-306
    [64]张国宏.高硅Y沸石制备方法[P]. CN: 1051710A, 1991.
    [65] Borbély G. P., Beyer H. K. Repeatedly performed solid-state substitution of silicon for framework aluminium in Y zeolite using crystalline (NH4)2SiF6 as dealumination agent[J]. Phys. Chem. Chem. Phys., 2003, 5 (24): 5544-5551
    [66]胡颖,罗一斌,赵学斌,等.骨架富硅分子筛SRY及其催化剂的研制[J].石油炼制与化工, 1999, 30 (2): 10-12
    [67]唐颐,朱玉琴,高滋.八面沸石骨架中空穴结构的红外光谱研究[J].催化学报, 1988, 9 (4): 373-379
    [68]高滋,唐颐. Y沸石的酸性[J].化学学报,1990,48,632-638
    [69]王秋莹,盛芬玲,菅盘铭,朱超,许言和,阎子峰,车飚.富硅超稳八面沸石研究—制备、表征、稳定性、羟基酸性及催化活性[J].高等学校化学学报, 1992,13 (5): 571-575
    [70] Gao Z., Tang Y. Influence of Si/Al ratio on the properties of faujasites enriched in silicon[J]. Zeolites, 1988, 8 (3): 232-237
    [71] Kerr G. T. Chemistry of Crystalline Aluminosilicates. V. Preparation of Aluminum-Deficient Faujasites[J]. J. Phys. Chem, 1968, 72 (7): 2594-2596
    [72] Kerr G T. Chemistry of crystalline aluminosilicates. VI. Preparation and properties of ultrastable hydrogen zeolite Y[J]. J. Phys. Chem, 1969, 73 (8): 2780-2782
    [73]刘兴云,张旭政,李宣文. NaY沸石草酸脱铝[J].高等学校化学学报,1997,18 (3): 342-347
    [74]刘兴云,裴站芬,佘励勤,等.新型高硅Y(NHSY)沸石的研究I. NHSY沸石的制备[J].催化学报, 1994, 15 (4): 278-283
    [75]刘兴云,裴站芬,佘励勤,等.新型高硅Y(NHSY)沸石的研究II. NHSY沸石的结一构特点[J].催化学报, 1994, 15 (4): 296-300
    [76]何静,李宣文,刘兴云,等.草酸脱铝Y沸石的性质[J].物理化学学报,1997,13 (6): 554-559
    [77]谢鹏,张盈珍,郑禄彬. Y型沸石用HCl + NH4F (H+ + F-)脱铝[J].催化学报,1993, 14 (5): 407-410
    [78] Young D A. Treatment of Aluminosilicate[P]. U.S.P. 3691099,1972
    [79] Beaumont R., Barthomeuf D. X, Y, aluminum-deficient and ultrastable faujasite-type zeolites : I. Acidic and structural properties[J]. J. Catal, 1972, 26 (2): 218-225
    [80] Barthomeuf D., Beaumont R. X, Y, aluminum-deficient, and ultrastable faujasite-type zeolites : III. Catalytic activity[J]. J.Catal, 1973, 30 (2): 288-297
    [81]刘辉,刘兴云,李宣文,等. NaY沸石的酸脱铝[J].石油化工,1998,27 (12): 880-885
    [82]唐颐,华伟明,高滋.改性Y沸石的孔结构与催化性能[J].物理化学学报,1992,8(5):595-601
    [83]黄曜,朱崇业,李全芝,等.不同方法处理的脱铝Y沸石的结构特征研究[J].高等学校化学学报,1992,13(11):1335-1339
    [84]黄曜,朱崇业,李全芝,等.不同超稳Y沸石的酸性质及其催化性能[J].分子催化, 1993, 7 (5):347-354
    [85] Janssen A. H., Koster A. J., de Jong K. P. On the Shape of the Mesopores in Zeolite Y: A Three-Dimensional Transmission Electron Microscopy Study Combined with Texture Analysis[J]. J. Phys. Chem. B, 2002, 106: 11905-11909
    [86] Cooper D. A., Hastings T. W., Hertzenberg Elliot P. Process for preparing zeolite Y with increased mesopore volume[P]. US: 5601798, 1997-02-11
    [87] Bertram R. V. Distillate product hydrocracking process[P]. US: 6235190, 2001-05-22
    [88] Occelli M. L. Middle distillate hydrocracking process[P]. US: 5076907, 1991-12-31
    [89] Ward J. W. Hydrocracking process for producing middle distillates[P]. US: 5464527, 1995-11-07
    [90] Habib M. M. Middle distillate selective hydrocracking process[P]. US: (CBV-760) 5925235, 1999-07-20
    [91] Mignard S., George-Marchal N., Kasztelan S. Process for mild hydrocracking of petroleum cuts using a catalyst containing at least two dealuminated Y zeolites[P]. US: 5954947, 1999-09-21
    [92] Wang F. L., Yu Z. N., Guan M. H., et al. Highly active midbarrel hydrocracking catalyst and the preparation thereof[P]. US: 6670295, 2003-12-30
    [93] Bauer L. J. Middle distillate selective hydrocracking process[P]. US: 7048845, 2006-05-23
    [94]赵琰.氧化铝、改性氧化铝及硅酸铝的酸性特征(续)[J].工业催化, 2002, 10 (3):56-62
    [95]尹泽群,王安杰,童广明,等.中间馏分油型加氢裂化催化剂用沸石的研究[J].石油炼制与化工, 2003, 34 (10): 25-27
    [96]樊宏飞,孙晓艳,关明华,等.一种高中油型加氢裂化催化剂的研制[J].工业催化, 2005, 13 (6):10-14
    [97]毛以朝,聂红,李毅,等.高活性中间馏分油型加氢裂化催化剂RT-30的研制[J].石油炼制与化工, 2005, 36 (6):1-4
    [98] Kim J. M., Jun S., Ryoo R. Improvement of Hydrothermal Stability of Mesoporous Silica Using Salts: Reinvestigation for Time-Dependent Effects[J]. J. Phys. Chems. B, 1999, 103 (30): 6200-6205
    [99] Lin W.,Chen J.,Sun Y.,et al. Bimodal Mesopore Distribution in a Silica Preparation by Calcining A Wet Surfafctant-containing Silicate Gel[J]. J Chem Soc Chem Commun, 1995, (23): 2367-2368
    [100] Das D., Tsai C. M., Cheng S., et al. Improvement of hydrothermal stability of MCM-41 mesoporous molecular sieve [J]. Chem. Commun, 1999:473-474
    [101] Bendahou K., Cherif L., Siffert S., et al. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene[J]. Appl. Catal. A: General, 2008, 351 (1): 82-87
    [102]徐如人,庞文琴.无机合成与制备[M].北京:高等教育出版社, 2001: 441-449
    [103] Mokaya R. Ultrastable mesoporous aluminosilicates by grafting routes[J]. Angew. Chem. Int ED,1999,38(19):2930-2934
    [104] Kim S S, Zhang W, Pinnavaia T J. Ultrastable mesostructured silica vesides[J]. Science,1998,282:1032-1035
    [105] Zhao D., Huo Q., Feng J., et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. J. Am. Chem. Soc., 1998, 120(24): 6024-6036.
    [106]孔德金,童伟益,郑均林,等.核壳型沸石分子筛的合成、表征与应用[J].化学通报, 2008, (4):249-255
    [107]吴正颖,魏一伦,王一萌,等.水热法直接合成介孔功能新材料[J].科学通报, 2004, 49(10):942-947
    [108] Maclahlan M. J.,Coombs N.,Ozin G. A.,Norraqueous Supamolecular Assembly of Mesostructure Metal Germanium Sulphides from (Ge4S10)4-clusters. Nature, 397: 681-684
    [109] Lin W.,Chen J.,Sun Y.,et al. Bimodal Mesopore Distribution in a Silica Preparation by Calcining A Wet Surfafctant-containing Silicate Gel[J]. J Chem Soc Chem Commun,1995, (23):2367-2368
    [110] Soler-Illia G. A. A., Sanchez C., Lebeau B., et al. Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures[J]. Chem. Rev, 2002, 1029 (11): 4093-4138
    [111] Zhao D. Y., Yang P. D., Huo Q. S., et al. Topological construction of mesoporous materials[J]. Solid catalysts and porous solids, 1998, 3: 111-121
    [112]韩宇,肖丰收.由沸石纳米粒子自组装制备具有高催化活性中心和水热稳定的新型介孔分子筛材料[J].催化学报,2003, 24 (2): 149-158
    [113]肖丰收,韩宇,裘式纶.介孔分子筛的酸性和水热稳定性[J].高等学校化学学报, 2002, 23(10): 1847-1853
    [114] Zhao D., Feng J., Huo Q., et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J]. Science, 1998, 279 (5350): 548-552
    [115] Zhang F., Yan Y., Yang H., et al. Understanding Effect of Wall Structure on the Hydrothermal Stability of Mesostructured Silica SBA-15[J]. J Phys Chem B, 2005, 109 (18): 8723-8732
    [116] Han Y., Li D., Zhao L., et al. High-Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica-Based Materials by Using Fluorocarbon-Hydrocarbon Surfactant Mixtures[J]. Angew. Chem. Int. Ed. 2003, 42 (31): 3633-3637
    [117]黄海燕,申宝剑,徐春明,等.新型中微孔复合分子筛的研究[J].化学学报,2002, 60(7): 1350-1352
    [118] Karlsson A., Stocker M., Schmidt R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach [J].Microporous and Mesoporous Materials, 1999, 27 (2-3): 181-192
    [119] Zhang Z., Han Y., Xiao F. S., et al. Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures[J].J Am Chem Soc, 2001, 123 (21): 5014-5021
    [120]刘苏,孔令东,何阿弟,等.在低表面活性剂浓度下合成含Y沸石次级结构单元的介孔分子筛[J].复旦学报(自然科学版),2003, 42 (6): 1003-1006
    [121] Ryoo R., Jun S., Kim J., et al. Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation[J]. Chem. Commun, 1997, (22): 2225-2226
    [122] Luan Z., Hartmann M., Zhao D., et al. Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves[J]. Chem. Mater, 1999, 11 (6): 1621-1627
    [123] Zeng S. h., Blanchard J., Breysse M., et al. Post-synthesis alumination of SBA-15 in aqueous solution: A versatile tool for the preparation of acidic Al-SBA-15 supports[J]. Microporous and Mesoporous Materials, 2005, 85 (3): 297–304
    [124] Karlsson A., Stocker M., Schafer K. In situ Synthesis of Micro- and Mesoporous Al-MFI / MCM-41 like Phases with High Hydrothermal Stability [J]. Stud. Surf. Sci. Cata1, 2000, 129: 99-106
    [125] Huang L., Guo W., Deng P., et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites[J].J. Phys. Chem. B, 2000,104 (13): 2817-2823
    [126] Guo W., Huang L., Deng P., et al. Characterization of Beta/MCM-41 composite molecular compared with the mechanical mixture sieve[J]. Microporous and Mesoporous Materials, 2001, 44-45: 427-434
    [127] Kloetstra K. R., van Bekkum H., Jansen R. J. Mesoporous material containing framework tectosilicate by pore–wall recrystallization[J]. Chem.Commun, 1997, (23): 2281-2282
    [128] Liu H., Bao X., Wei W., et al. Synthesis and characterization of kaolin/NaY/MCM-41 composites[J]. Microporous and Mesoporous Materials,2003,66 (1): 117-125
    [129]申宝剑,黄海燕,徐春明,等.双组元Y/MCM-41中微孔复合分子筛的合成和表征[J].化学学报, 2003, 61 (12): 1904-1910
    [130] Zhang W., Lu J., Han B., et al. Direct Synthesis and Characterization of Titanium-Substituted Mesoporous Molecular Sieve SBA-15[J]. Chem. Mater, 2002, 14 (8): 3413-3421
    [131] Newalkar B. L., Olanrewaju J, Komarneni S. Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave-Hydrothermal Conditions[J] Chem. Mater, 2001, 13(2): 552-557
    [132] Wu S-h., Han Y., Zou Y., et al. Synthesis of Heteroatom Substituted SBA-15 by the“pH-Adjusting”Method[J]. Chem. Mater, 2004, 16 (3): 486-492
    [133] Mokaya R. Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41[J]. J. Phys. Chem. B, 2000, 104(34): 8279-8286
    [134] Xia Y., Mokaya R. On the Hydrothermal Stability of Mesoporous Aluminosilicate MCM-48 Materials[J]. J. Phys. Chem. B, 2003, 107 (29): 6954-6960
    [135] Di Y., Yu Y., Sun Y., et al. Synthesis, characterization, and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors[J]. Microporous and Mesoporous Materials,2003,66 (2-3): 221-228
    [136] Han Y., Li N., Zhao L., et al. Understanding of the High Hydrothermal Stability of the Mesoporous Materials Prepared by the Assembly of Triblock Copolymer with Preformed Zeolite Precursors in Acidic Media[J]. J. Phys. Chem. B, 2003, 107 (31): 7551-7556
    [137] Han Y., Xiao F-S., Wu S., et al. A Novel Method for Incorporation of Heteroatoms into the Framework of Ordered Mesoporous Silica Materials Synthesized in Strong Acidic Media[J]. J. Phys.Chem. B, 2001, 105 (33): 7963-7966
    [138] Xiao F-S., Han Y., Yu Y., et al. Hydrothermally Stable Ordered Mesoporous Titanosilicates with Highly Active Catalytic Sites[J]. J. Am. Chem. Soc, 2002, 124 (6): 888-889
    [139] Han Y., Wu S., Sun Y., et al. Hydrothermally Stable Ordered Hexagonal Mesoporous Aluminosilicates Assembled from a Triblock Copolymer and Preformed Aluminosilicate Precursors in Strongly Acidic Media[J]. Chem. Mater, 2002, 14 (3): 1144-1148
    [140] Liu Y., Pinnavaia T. J. Assembly of Hydrothermally Stable Aluminosilicate Foams and Large-Pore Hexagonal Mesostructures from Zeolite Seeds under Strongly Acidic Conditions[J]. Chem. Mater., 2002, 14(1): 3-5
    [141] Liu Y., Zhang W., Pinnavaia T. J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds[J]. J. Am. Chem. Soc, 2000, 122 (36): 8791-8792
    [142] Lin S., Wang L-F.,Han Y.,et al,Tailor and Control of Acidic Strength in Ordered Mesoporous Aluminosilicates by Using Preformed Zeolite Precursors[J]. Chinese Journal of Chemistry, 2004, 22(1): 9-13
    [143] Sun Y-Y., Han Y., Yuan L., et al. Microporosity in Ordered Mesoporous Aluminosilicates Characterized by Catalytic Probing Reactions[J]. J. Phys. Chem. B, 2003, 107 (8): 1853-1857
    [144] Tao Y. S., Kanoh H., Kaneko K. Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating[J] J. Phys. Chem. B, 2003, 107, 10974-10976
    [145] Majano G., Mintova S., Ovsitser O., et al. Zeolite Beta nanosized assemblies[J]. Microporous and Mesoporous Materials, 2005, 80 (1-3): 227-235
    [146] Dimitrova R., Gunduzb G., Dimitrov L., et al. Acidic sites in beta zeolites in dependence of the preparation methods[J]. Journal of Molecular Catalysis A: Chemical, 2004, 214 (2): 265-268
    [147] Do T-O., Nossov A., Springuel-Huet M. A., et al. Kaliaguine S. Zeolite Nanoclusters Coated onto the Mesopore Walls of SBA-15[J]. J. Am. Chem. Soc, 2004, 126 (44): 14324-14325
    [148] Byambajav E., and Ohtsuka Y. Hydrocracking of asphaltene with metal catalysts[J]. Appl. Catal. A: General, 2003, 252 (1): 193-204
    [149] Corma A., González-Alfaro V., Orchillés A V. Decalin and Tetralin as Probe Molecules for Cracking and Hydrotreating the Light Cycle Oil[J]. J. catal, 2001, 200 (1) : 34-44
    [150] Reddy K M., and Song C. S. Synthesis of mesoporous zeolites and their application for catalytic conversion of polycyclic aromatic hydrocarbons[J]. Catal Today, 1996, 31 (1-2): 137-144
    [151] Barbosa F. A., Santos A. C. B., Silva M. I. P., et al. Resistance to poisoning by nitrogen compounds of NiMo/Al-MCM-41 hydrocracking catalysts[J]. Catal. Today, 2004, 98 (1-2) :109-113
    [152] Chen W., Zhao Q., Lin H., et al. Hydrocracking in Al-MCM-41: diffusion effect[J]. Microporous Mesoporous Mater, 2003, 66 (2-3): 209-218
    [153] Corma A., Mart′?nez A., Mart′?nez-Soria V. Catalytic Performance of the New Delaminated ITQ-2 Zeolite for Mild Hydrocracking and Aromatic Hydrogenation Processes[J]. J. Catal, 2001, 200 (2) :259-269
    [154]尹泽群,阮彩安,王安杰,等,MCM-41分子筛加氢裂化催化剂的研究[J].工业催化,2003,11(6):12-13
    [155] Zhu L., Xiao F-S., Zhang Z., et al. High activity in catalytic cracking over stable mesoporous aluminosilicates[J]. Catal. Today,2001, 68 (1-3):209-216
    [156] Zhao D., Nie C., Zhou Y., et al. Comparison of disordered mesoporous aluminosilicates with high ordered Al-MCM-41 on stability, acidity and catalytic activity[J]. Catal Today,2001,68 (1-3):11-20
    [157] Infantes-Molina A., Me′rida-Robles J., Rodr?′guez-Castello′n E., et al. Catalysts based on Co/zirconium doped mesoporous silica MSU for the hydrogenation and hydrogenolysis/ hydrocracking of tetralin[J]. Applied Catalysis A: General, 2005, 286 (2): 239-248
    [158] Koch H., Reschetilowski W. Is the catalytic activity of Al-MCM-41 sufficient for hydrocarbon cracking?[J]. Microporous and Mesoporous Materials, 1998, 25 (1-3): 127-129
    [159] Chaudhari K., Das T. K., Chandwadkar A. J., et al. Mesoporous Aluminosilicate of the MCM-41 Type: Its Catalytic Activity in n-Hexane Isomerization[J]. J. Catal, 1999, 186 (1): 81-90
    [160] Park K., Ihm S. Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization[J]. Appl. Catal. A: General, 2000, 203 (2): 201-209
    [161] Elangovan S. P., Hartmann M. Evaluation of Pt/MCM-41//MgAPO-n composite catalysts for isomerization and hydrocracking of n-decane[J]. J. Catal, 2003, 217 (2): 388-395
    [162]王瑶,王安杰,陈永英,等.以MCM-41位载体担载Ni-Mo硫化物制备柴油深度加氢脱硫催化剂[J].石油学报(石油加工), 2003, 19 (5): 36-41
    [163] Song C., Reddy K. M. Mesoporous sieve MCM-41 supported Co-Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels[J]. Appl. Catal. A: General, 1999, 176 (1): 1-10
    [164] Vradman L., Landau M. V., Herskowitz M., et al. High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation[J]. J Catal, 2003, 213 (2): 163-175
    [165] Li X., Wang A., Wang Y., et al. Hydrodesulfurization of Dibenzothiophene Over Ni-Mo Sulfides Supported by Proton-Exchanged Siliceous MCM-41[J]. Catal. Letters, 2002, 84 (1-2): 107-113
    [166] Murali Dhar G., Muthu Kumaran G., Kumar M., et al. Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts[J]. Catal. Today, 2005, 99 (3-4): 309-314
    [167] Corma A., Martinez A., Martinez-Soria V., et al. hydrocracking of Vacuum Gasoil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst[J]. J. Catal, 1995, 153 (1): 25-31
    [168] Yang H., Fairbridge C., Hill J., et al. Comparison of hydrogenation and mild hydrocracking activities of Pt-supported catalysts[J]. Catal. Today, 2004, 93–95: 457-465
    [169] Emeis C. A. Determination of integrated Molar Extinction Coefficients for Infrared Adsorption Bands of Pyridine Adsorbed on Solid Acid Catalysts[J]. J. Catal, 1993, 141 (2): 347-354
    [170] Sohn J. R., DeCanio S. J., Lunsford J. H., et al. Determination of framework aluminium content in dealuminated Y-type zeolites: a comparison based on unit cell size and wavenumber of i.r. bands[J]. Zeolites, 1986, 6 (3): 225-227
    [171] Sato K., Nishimura Y., Honna K., et al. Role of HY Zeolite Mesopores in Hydrocracking of Heavy Oils[J]. J. catal, 2001, 200 (2):288-297
    [172] Ali M. A., Tatsumi T., Masuda T. Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports[J]. Appl. Catal, 2002, 233 (1-2):77-90
    [173] Hassan A., Ahmed, Ali M. A., et al. A comparison betweenβ- and USY-zeolite-based hydrocracking catalysts[J]. Appl. Catal, 2001, 220 (1-2):59-68
    [174] Isoda T., Kusakabe K., Morooka S., et al. Reactivity and Selectivity for the Hydrocracking of Vacuum Gas Oil over Metal-Loaded and Dealuminated Y-Zeolites[J]. Energy & Fuels, 1998, 12 (3):493-502
    [175] Abramova A. V., Slivinskii E. V., Goldfarb Y. Y., et al. Development of efficient zeolite-containing catalysts for petroleum refining and petrochemistry[J]. Kinet & Catal, 2005, 46 (5): 758-769
    [176]张福强.介孔材料水热稳定性的改进及新型介孔碳材料的水相合成[D].上海:复旦大学,2007
    [177]左东华,聂红,Michel V,等.硫化态NiW/Al2O3催化剂的加氢脱硫活性相的研究I. XPS和HREM表征[J].催化学报,2004, 25 (4): 300-314
    [178]左东华,聂红,Michel V,等.硫化态NiW/Al2O3催化剂的加氢脱硫活性相的研究II.程序升温还原表征[J].催化学报,2004, 25 (5): 373-376
    [179]李洪宝,黄卫国,康小红,等.载体对Ni-W加氢催化剂活性相及芳烃饱和性能的影响[J].石油学报(石油加工),2006, 22 (6): 69-75
    [180]牛国兴,张伟,李全芝.加氢处理催化剂载体中Y型分子筛对催化剂表面性质和催化性能的影响[J].催化学报,1995, 16 (3): 190-195
    [181]王锦业. NiW/γ-Al2O3加氢处理催化剂活性相的研究[D].北京:中国石油化工研究院,1999.
    [182]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2001,625-640
    [183]李大东.加氢处理工艺与工程[M].北京:中国石化出版社,2003,748-749
    [184]杨朝合,郑海,徐春明,等.渣油加氢裂化反应特性及反应机理初探[J].燃料化学学报,1999,27(2): 97-101
    [185]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2001,172-175
    [186] Mangnus P. J., Bos A., Moulijn J. A. Temperature-Programmed Reduction of Oxidic and Sulfidic Alumina-Supported NiO、WO3 and NiO-WO3 Catalysts[J]. J Catal, 1994, 146 (2): 437-448
    [187] Scheffer B., Molhoek P., Moulijn J. A. Temperature-programmed reduction of NiO-WO3/Al2O3 Hydrodesulphurization catalysts[J]. Appl Catal, 1989, 46 (1-2):11-30
    [188]牛国兴,朱崇业,李全芝,等. Ni和P组分对Ni-W-P/REUSY-γ-Al2O3催化剂表面性质的影响[J].催化学报(增刊),1993, 57-61
    [189] Thomas R., van Oers E. M., de Beer V. H. J., et al. Characterization ofγ-alumina-supported Molybdenum oxide and tungsten oxide; reducibility of the oxidic state versus hydrodesulfurization activity of the sulfided state[J]. J Catal, 1982, 76 (1): 241-253