含ZSM-5新型催化材料的合成表征与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯是一种重要的基本有机合成原料,用来生产聚丙烯、丙烯腈、环氧丙烷等化工产品。丙烯及其衍生物的生产与消费同国民经济的发展密切相关。由于受到丙烯下游衍生物(主要是聚丙烯)需求的驱动,近年来全球丙烯的年需求量一直持续增长,这种发展趋势仍将持续下去,未来全球可能会面临丙烯资源供应紧张的问题。因此增产丙烯成为石化领域研究的热点,主要集中在工艺和催化剂方面。
     ZSM-5分子筛催化剂广泛应用于催化裂化过程中增产丙烯,其制备大多采用半合成法。半合成法将分子筛和基质用粘结剂粘结后进行喷雾干燥成型,活性组分被分散在基质中,其中部分ZSM-5被基质所包裹,反应物和产物分子的传递、运动必须要经过粘结剂和基质的孔道才能到达活性组分表面,从而降低了活性组分的利用率。基于此,本论文旨在开发新型多产丙烯ZSM-5分子筛催化材料,即在高岭土微球或固体硅胶小球上原位晶化合成ZSM-5分子筛,使反应物分子直接接触活性组分进行反应,进而提高ZSM-5分子筛活性组分的利用率。同时,原位晶化合成法以高岭土或硅胶小球为原料同时制备活性组分和基质,得到的晶化产物可以直接应用于生产。
     本论文首先研究了在不同焙烧温度下的高岭土微球上ZSM-5分子筛的原位晶化合成。研究发现,产物ZSM-5分子筛的晶化效果与高岭土微球的焙烧处理温度有关。由于高岭土微球在不同焙烧温度下,其微球中含有的具有化学反应活性的SiO2和Al2O3的含量发生变化,而其正是合成ZSM-5分子筛的原料,故最终导致高岭土微球的焙烧温度对ZSM-5分子筛的晶化产生不同程度的影响。详细考察晶化时间、晶化温度、初始凝胶硅铝比及pH值对ZMS-5分子筛晶化的影响,结果表明,晶化时间和晶化温度对于杂晶相态MOR、P型沸石形成的抑制及纯相态、结晶度高ZSM-5分子筛合成起着决定性作用。在本实验条件下,36小时的晶化时间内,提高晶化温度可以得到纯相态、结晶度高的ZSM-5分子筛材料。以此材料为催化裂化增产丙烯助剂,在重油微反装置上,考察了其重油催化裂化反应性能。评价结果表明,高岭土微球上经“原位晶化法”合成的ZSM-5分子筛使丙烯和丁烯的收率增加了4个百分点,对低碳烯烃具有很好的选择性。
     在高岭土微球上原位晶化合成ZSM-5分子筛研究的基础上,探索了以酸处理高岭土为原料,水热体系中ZSM-5分子筛的合成,目的是最大程度将廉价的高岭土转化为高价值的ZSM-5分子筛。通过XRD、FT-IR、N2吸附脱附技术、SEM及吡啶吸附等手段对合成材料进行表征,结果表明以高岭土为原料得到的ZSM-5分子筛物相单一,结晶度相对较高,具有规整的微孔结构,而且分子筛酸类型以B酸为主,存在少量的L酸,有利于催化裂化反应进行。重油微反评价结果表明这种由高岭土法合成的ZSM-5分子筛催化剂,在添加量为5%的情况下,使丙烯收率增加了近3个百分点,液化气收率增加了6.91个百分点,对丙烯具有较好的选择性,增产丙烯效果明显。
     本论文还在固体硅胶小球上,以廉价的正丁胺为模板剂,探索了ZSM-5分子筛合成。通过以上相同手段对合成材料进行表征,发现ZSM-5分子筛均匀地生长在硅胶小球的表面,而且硅胶小球的形貌被完整的保留了下来,形成了微孔和大孔复合孔结构的新材料。此外,研究还发现,ZSM-5分子筛的晶体大小可以通过“两段升温晶化法”在0.5-20微米之内进行调变。晶化时间、晶化温度、钠含量和碱含量等合成条件对ZSM-5分子筛的晶化和晶体形貌都会产生一定的影响。以得到的含不同硅铝比的ZSM-5分子筛的硅胶小球作为助剂,重油微反评价结果表明,在添加量为3%的条件下,丙烯收率平均提高3.74个百分点。且随着复合材料中ZSM-5分子筛硅铝比的增加,汽油、柴油收率逐渐增加,同时丙烯、丁烯等低碳烯烃的收率增幅下降,说明低硅铝比的复合材料更适合于增产低碳烯烃。
     将固体硅胶原位晶化合成ZSM-5分子筛的课题研究进行拓展,本论文还探索了硅胶小球上多级孔ZSM-5分子筛的合成。研究结果表明,以十六烷基三甲基溴化铵和四丙基溴化铵、四丙基氢氧化铵为双重模板剂,采用低温、高温两步晶化法可以成功地在固体硅胶小球上合成多级孔ZSM-5分子筛。这种多级孔ZSM-5分子筛晶体大小为8微米左右,均匀地分布在硅胶小球的表面,而且硅胶小球的形貌被完整地保留下来。通过对这种材料进行物化性能表征,发现这种多级孔ZSM-5分子筛含有类似MCM-41孔道的介孔结构,介孔孔径分布在3纳米左右。通过在多级孔ZSM-5分子筛合成过程中,添加不同量1,3,5-三甲基苯有机溶剂,可以对介孔孔径在3-20纳米之间进行调变。在第二步高温晶化过程中,晶化时间、模板剂的含量及初始凝胶硅铝比等合成因素都会对多级孔ZSM-5分子筛的孔结构产生不同程度的影响。此外,通过对多级孔ZSM-5分子筛形成机理探讨可知,在多级孔ZSM-5分子筛合成过程中,第一步晶化时间的控制是非常重要的,时间过长或过短都不利于多级孔ZSM-5分子筛的合成。最后,采用丙烯齐聚反应作为探针反应,比较了常规ZSM-5分子筛和多级孔ZSM-5分子筛的催化性能差异。反应结果表明,与常规ZSM-5分子筛相比,多级孔ZSM-5分子筛具有高丙烯齐聚转化率,而且对芳香烃和环烷烃具有较高的选择性。
Propylene is an important industrial chemical; however, the supply of propylene is not keeping pace with its demand, as a result, research on increasing propylene production has become a topic of interest. ZSM-5 zeolite with three-dimensional sinusoidal and straight channels of molecular dimension was first used by Mobil in 1990s to increase the yield of propylene. This zeolite selectively cracks C7-C13 straight and short branched chain hydrocarbons to C3-C5 olefins. Thus, it increases the yield of light olefins and has become the preferred catalyst or additive for enhancing the yield of propylene in the field of petrochemical processing.
     The method for in-situ synthesis of ZSM-5 has significant advantages compared to the additive’s traditional preparation. In the traditional method of ZSM-5 additive preparation, the active component ZSM-5 is embedded in a binder or matrix which greatly reduces the contact between the feedstock and the active component. Consequently, the efficiency of ZSM-5 zeolite is decreased. This paper focuses on using the method of in-situ synthesis, in this paper ZSM-5 zeolite is synthesized on the surfaces of kaolin microspheres or silica gel microspheres, thus allowing the feed oil easier access to the active component. Furthermore, because the active component and matrix were obtained together during the synthesis of ZSM-5 zeolite, this ZSM-5 crystallization product can be directly used as an additive in industry.
     The in-situ synthesis of ZSM-5 zeolite on kaolin microspheres calcined at different temperatures was studied first. The results indicate that the synthesis of ZSM-5 is related to the calcination temperature of kaolin. When the kaolin microspheres were calcined at different temperatures, the amounts of chemically active SiO2 and active Al2O3 in the kaolin microspheres were different. However, the chemically active SiO2 and active Al2O3 are the“nutrients”for the zeolite synthesis; therefore the calcination temperature has an important effect on the synthesis of ZSM-5 zeolite. Some variables, including crystallization time, crystallization temperature, silica to alumina ratio of the initial gel and the pH of the initial gel, were investigated. The results showed that, compare to other variables, crystallization time and crystallization temperature played the most important roles of synthesizing pure, high crystallinity ZSM-5 zeolite. Under our experimental conditions, within a certain hour, increasing crystallization temperature can obtain pure and high crystallinity ZSM-5 zeolite. Using this ZSM-5 zeolite as an additive to an FCC catalyst, catalytic cracking reactions were carried out on a heavy oil micro fixed-bed reactor unit. The results show that by adding 10% of ZSM-5 to the base ZC7300 FCC catalyst, the yields of light olefins such as propylene and butylene increased by approximately four percent. This shows that novel ZSM-5 zeolite has a good selectivity for the light olefins.
     Based on the above research about the in-situ synthesis of ZSM-5 zeolite on the kaolin microspheres, the hydrothermal synthesis of ZSM-5 zeolite was investigated using acid treated kaolin as a raw material. The objective of this study is to convert cheap kaolin to high value ZSM-5 zeolite completely. The XRD, FT-IR, N2 adsorption-desorption, SEM and Pyridine adsorption techniques were used to characterize the obtained ZSM-5 zeolite. The results show that the ZSM-5 zeolite is pure and has high crystallinity, good micropore structure and more B acid site which favors FCC reactions. The cracking catalytic activity of this ZSM-5 zeolite was studied on a heavy oil micro fixed-bed reactor unit using Daqing VGO as a feedstock. The results indicated that by adding 5% of ZSM-5 to the base ZC7300 FCC catalyst, the yields of propylene and LPG increased by approximately three percent and 6.91 percent, respectively. These results demonstrate that this ZSM-5 zeolite obtained from kaoliin has a good selectivity for propylene and can improve the propylene production effectively.
     In addition, the in-situ synthesis of ZSM-5 zeolite was studied using n-Butylamine as a structure directing agent. Some characterization techniques, including XRD, FT-IR, N2 adsorption-desorption, SEM and pyridine adsorption, were used to measure the properties of ZSM-5 zeolite. Results show that ZSM-5 zeolite was in-situ synthesized on the silica gel microspheres uniformly, and the shape of the silica gel microspheres was retained, and composite materials with micropore structure and macropore structure were formed. The crystal size of ZSM-5 can be tuned by the method of“two-stage temperature crystallization”within the range of 0.5-20 um. Some synthesis variables, such as crystallization time, crystallization temperature, sodium concentration, alkalinity, have been shown to affect the crystallization and morphologies of ZSM-5 zeolite. Using this novel ZSM-5 zeolite with different silica to alumina ratios as an additive of FCC catalyst, heavy oil catalytic cracking reaction was carried out on a micro fixed-bed reactor. The reaction results indicate that by adding 3% of ZSM-5 to the base ZC7300 FCC catalyst, the yields of propylene increased by 3.74% on average. When silica to alumina ratio was increased, the yields of gasoline and diesel were increased gradually and the yields of light olefins including propylene and butylenes were decreased, showing that the ZSM-5 zeolite with lower silica to alumina ratio is much more suitable for improving the yield of light olefins.
     Extending the research on in-situ synthesis of ZSM-5 zeolite on the surface of silica gel microspheres, the in-situ synthesis of hierarchical ZSM-5 zeoite was investigated. Results showed that ZSM-5 zeolites with hierarchical porosity were successfully synthesized in-situ on the surface of silica gel microspheres under hydrothermal conditions through cetyltrimethylamnonium bromide (CTAB) and tetrapropylammonium hydroxide (TPAOH) dual templates method. SEM pictures show that the silica gel microspheres were wrapped by a layer of ZSM-5 crystals and the shape of silica gel microspheres was retained very well. TEM pictures and N2 adsorption-desorption data indicate that the ZSM-5 zeolite has intracrystal mesopores with average pore size of 3nm and pore size distribution is only 0.8nm width at half maximum of distribution peak which is very narrow. The pore size can be tuned between 3nm to 20nm by adding the 1, 3, 5-trimethybezene. Catalytic test show that the hierarchical ZSM-5 zeolite catalyst exhibits higher catalytic activity for propylene oligomerization than microporous ZSM-5 zeolite. The high proplylene conversion and aromatic and cycloalkane products selectivity are mainly attributed to the presence of the hierarchical porosity.
引文
[1]徐如人,庞文琴.沸石分子筛与多孔材料化学[M],科学出版社, 2004.
    [2]沈晓洁.沸石分子筛的发展及在石油化工中的应用[J].辽宁化工, 1997,26(3):139-140.
    [3] den Hollander M. A., Wissink M., Makkee M., et al. Gasoline conversion: reactivity towards craking with equilibrated FCC and ZSM-5 catalysts [J]. Applied Catalysis A: General, 2002, 223(1-2): 85-102.
    [4] Biswas J, Maxwell I E. Octane enhancement in fluid catalytic cracking: I. Role of ZSM-5 addition and reactor temperature [J]. Applied Catalysis, 1990, 58(1): 1-18.
    [5] Kerr G T, Kokotailo G T. Sodium Zeolite ZK-4, a new synthetic crystalline aluminosilicate [J]. J. Am. Chem, Soc., 1961, 83(22), 4675-4676.
    [6] Wilson S T, Lok B M, Flanigen E M. Crystalline metallophosphate compositions [P]. US 4310440, 1982.
    [7]张铨昌,刘蔚玲,韩成,等.超大沸石矿物的合成[J].科学通报, 1994,39(4):352-356.
    [8] Xu W, Li J. W, eta1.Nonaqueous synthesis of ZSM-35 and ZSM-5[J]. Zeolites, 1989, 9: 468-473.
    [9] Colin S. Cundy, Paul A. Cox. The Hydrothermal Synthesis of Zeolite: History and Development from the Eaeliest Days to Present Time [J]. Chem. Rev., 2003, 103 (3): 663-701.
    [10] Uguina M A, Serrano D P, Overjero G etal. TS-2 synthesis from wetness-impregnated SiO2-TiO2 xerogels [J]. Zeolites, 1997,18:368-378.
    [11] Eric G. D, Serge D, Zelimir G, Niels B. Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates[J]. Appl.Catal.,1981,1(3-4): 201-224.
    [12] Iton L E, Trouw F, Rum T O etal. Small-Angle Neutron-Scattering Studies of the Template-mediated Crystallization of ZSM-5 type Zeolite[J]. Langmuir, 1992,8(4): 1045-1048
    [13] Kokotailo G T, Lawton S L, Olson D H, Meier W M. Structure of synthetic zeolite ZSM-5 [J]. Nature, 1978, 272:437-438
    [14] Olson D H, Kokotailo G T, Lawton S L, Meier W M. Crystal structure andstructure-related properties of ZSM-5. J.Phys. Chem.[J], 1981,85:2238-2243
    [15]高雄厚,张永明,唐荣荣. ZSM-5沸石合成技术的进展(一) [J].催化裂化, 1997, 16(21), 43-47
    [16] Kulkarni S.J., Srinivasu P., Narender N., Raghavan K.V..Fast and efficient synthesis of ZSM-5 under high pressure [J]. Catalysis Communications, 2002,3:113-117
    [17]窦涛、冯芳霞、萧墉壮等.ZSM- 5沸石的合成及表征[J].石油学报,1997,13(1):100-103.
    [18] Bibby D M, Dale M P. Synthesis of silica-sodalite from non-aqueous systems [J].Nature, 1985,317(12):157-158
    [19] Hou Q, Feng S, Xu R. First synthesis of pentasil-type silica zeolites from non-aqueous systems [J].J Chem Soc,Chem Commun, 1988, 1486-1487
    [20] Xu W, L J,L W, et al. Nonaqueous synthesis of ZSM-35 and ZSM-5[J].Zeolites, 1989,9:468-473
    [21] Stephen J. Miller, San Francisco, Calif.Preparation of Alumino silicate zeolites [P]. US 5558851, 1996
    [22] Sythesis of zeolite Beta from dense system containing a minimum of template [J]. Catalysis Letters, 1994, 26:285-289
    [23] Lawrence L. Murrell, Rudolf A. Owerbreek, Yun-feng Chang etal. Method for making molecular sieves and novel molecular sieve compositions [P]. US 6004527, 1999
    [24] Stephen J. Miller. Method for making ZSM-5 zeolites [P]. US 6261534, 2001
    [25] Xu W, Dong J, Li J, et al. A novel method for the preparation of zeolite ZSM-5[J] . J Chem Soc, Chem Commun, 1990 , 755-756
    [26] Sano T, Kiyozumi Y, Mizukami F, et al. In situ observation of crystal growth of zeolite ZSM-5 under steaming conditions by optical microscopy [J]. Micro Mater, 1993, 1 : 353-357
    [27] Iwasaki A, Hirata M, Kudo I, et al. In situ measurement of crystal growth rate of zeolite [J]. Zeolites, 1995,13 : 308-314
    [28] Kim M, Li H, Davis M E. Synthesis of zeolites by water organic vaporphase transport [J]. Micro Mater, 1993,1 : 191-200
    [29] Kim M, Jung M, Rhee H. The role of amines in the synthesis of zeolites by water-oranic vapor phase transport [J]. Korean J Chem Eng,1995 ,12 (4) : 410-415
    [30] Matsukata M, Nishiyama N, Ueyama K. Synthesis of zeolites under vapor atmosphere effect of synthetic conditions on zeolite structure [J]. Micro Mater, 1993, 1: 219-222
    [31] Matsukata M, Nishiyama N, Ueyama K. Crystallization of FER and MFI zeolites by a vapor-phase transport method [J]. Micro Mater, 1996, 7: 109-117
    [32] Thoma S G, Nenoff T M. Vapor phase transport synthesis of zeolites from sol-gel precursors [J]. Micro Meso Mater, 2000, 41: 295-305
    [33] A. Dong, Y. Wang, Y. Tang, et al. Hollow Zeolite Capsules: A Novel Approach for Fabrication and Guest Encapsulation [J]. Chem. Mater., 2002, 14 (8), 3217-3219
    [34] A. Dong, Y. Wang, Y. Tang, et al. Hydrothermal Conversion of Solid Silica Beads to Hollow Silicalite-1 Sphere [J]. Chemistry Letters, 2003, 32(9), 790-791
    [35] A. Dong, Y. Wang, D. Wang, et al. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors [J]. Microporous and Mesoporous Materials. 2003, 64: 69-81
    [36] A. Dong, Y. Wang, D. Wang, et al. Preparation of hollow zeolite spheres and three-dimensionally ordered macroporous zeolite monoliths with functionalized interiors [J]. Adv.Funct. Mater. 2003, 13(12): 943-948
    [37] G. Schult-Ekloff, J. Rathousk_y, A. Zukal, Mesoporous silica with controlled porous structure and regular Morphology [J]. Int. J. Inorg. Mater. 1999,1: 97
    [38]徐红. ZSM-5分子筛择形催化剂的工业应用[J].化工时刊.1999,4:4-6
    [39]张丽,吴锋,路嫔等.金属负载HZSM-5催化剂上乙烯芳构化反应研究[J].化学世界.2004,7:353-356
    [40]徐佩若,班卡拉ND ,吴指南等.低碳烯烃在改性HZSM-5分子筛上芳构化研究[J] .燃料化学学报,1993 ,21(2) :127-134
    [41] Zai hui Fu, Du lin Yin, Ya shu Yang et al. Characterization of modified ZSM- 5 catalysts for propane aromatization prepared by a solid state reaction [J]. Appl. Catal. , 1995, 124(1): 59-71
    [42]熊国兴,邵春岩,崔巍,等.在HZSM - 5分子筛上引入Zn、Ga物种对乙烷芳构化的影响[J ] .石油化工,1994 ,23(1) :1-6
    [43]沈晓洁.沸石分子筛的发展及在石油化工中的应用[J].辽宁化工.1997,26(3): 139-140
    [44] Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of alkyltrimethyl-ammonium-kanemite complexes and their conversion to microporous materials[J]. Bull Chem Soc Jpn. 1990, 63: 988-992
    [45] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-718
    [46] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114: 10834-10843
    [47] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/ inorganic composite-materials [J]. Nature, 1994, 368: 317-321
    [48] Huo Q S, Margolese D I, Stucky G D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials [J]. Chem. Mater., 1996, 8(5): 1147-1160
    [49] Stucky G. D, Huo Q S, Firouzi A, et al. Directed synthesis of organic/inorganic composite structures [J]. Progress in Zeolite and Microporous Materials, 1997: 3-28
    [50] Bourlinos A B, Karakassides M A, Petridis D. Synthesis and characterization of iron-containing MCM-41 porous silica by the exchange method of the template[J]. J. Phys. Chem. B, 2000, 104: 4375-4380.
    [51] Kawi S, Lai M W. Supercritical fluid extraction of surfactant template from MCM-41[J]. Chem. Commun., 1998: 1407-1408.
    [52] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular-sieves for catalytic-oxidation of aromatic-compounds [J]. Nature, 1994, 368: 321-323.
    [53] Tanev P T, Chibwe M, Pinnavaia T J, et al. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995, 267(5219): 865-867
    [54] Tanev P T, Pinnavaia T J. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties [J]. Chem. Mater., 1996, 8(8): 2068-2079
    [55] Zhang W, Pauly T R, Pinnavaia T J. Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (S I ) assembly pathway[J]. Chem. Mater., 1997, 9(11): 2491-2498
    [56] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecularsieves by non ionic popyethylene oxide surfactants[J]. Science, 1995, 269: 1242-1244
    [57] Tanev P T, Liang Y, Pinnavaia T J. Assembly of Mesoporous Lamellar Silicas with Hierarchical Particle Architecture [J]. J. Am. Chem. Soc., 1997, 119(37): 8616-8624
    [58] Kim S S, Zhang W Z, Pinnavaia T J. Ultrastable mesostructured silica vesicles[J]. Science, 1998, 282(13): 1302-1305
    [59] Zhao D, Feng J, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552
    [60] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structure[J]. J. Am. Chem. Soc., 1998, 120(24): 6024-6036
    [61] Kruk M, Jaroniec M, Ko C H, Ryoo R. Characterization of the Porous Structure of SBA-15[J]. Chem. Mater., 2000, 12(7): 1961-1968
    [62] Sun J H, Moulijn J A, Jansen K C, et al. Alcothermal synthesis under basic conditions of an SBA-15 with long-range order and stability [J]. Adv. Mater., 2001, 13: 327-331
    [63] Monnier A, Schuth F, Huo Q, et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures[J]. Science, 1993, 261: 1299-1303
    [64] Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. J. Chem. Soc. Chem. Commun., 1993: 680-685
    [65] Goltner C G, Antonietti M. Mesoporous materials by templating of liquid crystalline phases [J]. Adv. Mater., 1997, 9: 431-435.
    [66] Goltner C G, Henke S, Weissenberger M C, et al. Mesoporous silica from lyotropic liquid crystal polymer templates[J]. Angew Chem. Int. Ed., 1998, 37: 613-616
    [67] Chen C Y, Burkett S L, Li H X, Davis M E. Studies on mesoporous materials. II. Synthesis mechanism of MCM-41[J]. Microporous Mater., 1993, 2(1): 27-34
    [68] Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays[J]. Chem. Mater., 1994; 6(8): 1176-1191
    [69] Pe′rez-Ram?′rez J, Kapteijn F, Groen J C, et al. Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition [J]. J. Catal. 2003, 214(1): 33-45.
    [70] Ogura M, Shinomiya S, Tateno J, et al. Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution [J]. Chem. Lett. 2000, 29(8): 882-883.
    [71] Ogura M, Shinomiya S, Tateno J, et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl. Catal. A: Gen. 2001, 219(1-2), 33-43.
    [72] Ogura M., Kikuchi E., Matsukata M. MFI zeolite with uniform mesopores created by alkali treatment [J] Stud. Surf. Sci. Catal., 2001, 135: 216-218.
    [73] Suzuki, T.; Okuhara, T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution [J].. Microporous Mesoporous Mater. 2001, 43(1):83-89.
    [74] Groen J C, Pe′rez-Ram?′rez J, Peffer L A A. Formation of Uniform Mesopores in ZSM-5 Zeolite upon Alkaline Post-treatment [J].Chem. Lett. 2002, 31(1):94-95.
    [75] Groen, J C, Peffer L A A, Pe′rez-Ram?′rez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous Mesoporous Mater. 2003, 60(1):1-17
    [76] Groen J C, Jansen J C, Moulijn J A, Pe′rez-Ram?′rez J. Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication [J]. J. Phys.Chem. B. 2004, 108(35): 13062-13065.
    [77] Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, deJong K P, Moulijn J A, Pe′rez-Ram?′rez J. Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals[J]. J. Am. Chem. Soc. 2005, 127(31), 10792-10793.
    [78] Groen, J. C.; Moulijn, J. A.; Pe′rez-Ram?′rez, J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination[J]. Microporous MesoporousMater. 2005, 87(2): 153-161.
    [79] Su L, Liu L, Zhuang J, Wang H, Li Y, Shen W, Xu Y, Bao X. Creating Mesopores in ZSM-5 Zeolite by Alkali Treatment: A New Way to Enhance the Catalytic Performance of Methane Dehydroaromatization on Mo/HZSM-5 Catalysts[J]. Catal. Lett. 2003, 91(3-4): 155-167.
    [80] Dessau R M, Valyocsik E W, Goeke N H. Aluminum zoning in ZSM-5 as revealed by selective silica removal[J]. Zeolites, 1992, 12(7):776-779.
    [81] Tao Y., Kanoh H., Abrams L., et al. Mesopore-modified zeolites: preparation, characterization and application. Chem. Rev. 2006, 106:896-910
    [82] Groen J.C, Sano T, Moulijn J A et al. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. Journal of Catalysis. 2007, 251(1):21-27.
    [83] Lynch J, Raatz F, Dufresne P. Characterization of the textural properties of dealuminated HY forms [J]. Zeolites, 1987, 7(4): 333-340.
    [84] Patzelova′V, Jaeger N I. Texture of deep bed treated Y zeolites[J]. Zeolites 1987, 7(3): 240-242.
    [85] Lynch J., Raatz F., Delalande Ch. Characterization of the Secondary Pore System in Dealuminated HY Zeolites Comparison between Isomorphous Substitution and Hydrothermal Treatment[J]. Stud. Surf. Sci. Catal. 1988, 39:547-557.
    [86] Maher P K, Hunter F. D., Scherzer J. In molecular zeolites I. AdV. Chem. Ser. 1971, 101: 266-278.
    [87] Cartlidge S, Nissen H U, Wessicken R. Ternary mesoporous structure of ultrastable zeolite CSZ-1[J]. Zeolites, 1989, 9(4): 346-349.
    [88] Corma A, Diaz-Cabanas M J, Martinez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst [J]. Nature, 2002, 418: 514-517.
    [89] Choi-Feng C, Hall J B, Huggins B J, Begerlein R A. Electron Microscope Investigation of Mesopore Formation and Aluminum Migration in USY Catalysts[J]. J. Catal.1993, 140(2): 395-405.
    [90] Sasaki Y, Suzuki T, Takamura Y, Saji A, Saka, H. Structure Analysis of the Mesopore in Dealuminated Zeolite Y by High Resolution TEM Observation with Slow Scan CCD Camera[J]. J. Catal.1998, 178(1): 94-100.
    [91] Horikoshi H., Kasahara S., Fukushima T., et al. Wernicke's Encephalopathy Accompanied by Multiple Symptomatic Cerebral Hemorrhages during the Recovery Phase [J]. J. Chem. Soc. Jpn. 1989, 4:398-331.
    [92] Lohse U., Mildebrath M. Z. Adsorption calorimetric measurements and 27Al DOR NMRstudies on the molecular sieve AlPO4-18[J].Anorg. Allg. Chem. 1981, 476: 126-130.
    [93] Janssen A H, Koster A J, de Jong K P. On the Shape of the Mesopores in Zeolite Y: A Three-Dimensional Transmission Electron Microscopy Study Combined with Texture Analysis [J]. J. Phys. Chem. B. 2002,106(46): 11905-11909.
    [94] Janssen, A. H.; Koster, A. J.; de Jong, K. P. Three-Dimensional Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y [J]. Angew. Chem., Int. Ed.2001, 40(6), 1102-1104.
    [95] Nesterenko N S, Thibault-Starzyk F, Montouillout V, et al. Accessibility of the acid sites in dealuminated small-port mordenites studied by FTIR of co-adsorbed alkylpyridines and CO[J]. Microporous Mesoporous Mater. 2004, 71(1-3): 157-166.
    [96] Lee K H, Ha B H. Characterization of mordenites treated by HCl/steam or HF [J]. Microporous Mesoporous Mater. 1998, 23(3-4):211-219.
    [97] Meima, G. R. advances in cumene production [J].Advanced CATTECH 1998, 2(1): 5-12.
    [98] Lago R. M., Haag W. O., Mikovsky R. J., et al. The Nature of the Catalytic Sites in HZSM-5- Activity Enhancement[J].Stud. Surf. Sci. Catal. 1986, 28:677-684.
    [99] Rozwadowski, M.; Kornatowski, J.; W?och, J.; Erdmann, K.; Go?embiewski,R. Attempt to apply the fractal geometry for characterisation of dealuminated ZSM-5 zeolite[J]. Appl. Surf. Sci. 2002, 191(1-4): 352-361.
    [100] Lo′pez-Fonseca R., Rivas B. de, Gutie′rrez-Ortiz J. I., et al. Characterisation of the textural properties of chemically dealuminated Y zeolites[J].Stud. Surf. Sci. Catal. 2002, 144: 717-722.
    [101] Triantafillidis C S, Vlessidis A G, Evmiridis N P. Dealuminated H-Y Zeolites: Influence of the Degree and the Type of Dealumination Method on the Structural and Acidic Characteristics of H-Y Zeolites [J]. Ind. Eng. Chem. Res. 2000, 39(2): 307-319.
    [102] Kerr G T. Proton Ejection Accompanying Light-Induced Electron Transfer in Chlorophyll-Quinone System [J]. J. Phys. Chem. 1967, 71(12): 4155-4156.
    [103] Katada N, Kageyama Y, Takahara K, Kanai T, Begum H A, Niwa M. Acidic property of modified ultra stable Y zeolite: increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt[J]. J. Mol. Catal. A. 2004, 211(1-2):119-130.
    [104] Beyer H. K., Belenyakaja I. A New Method for the Dealumination of Faujasite-Type Zeolites [J]. Stud. Surf. Sci. Catal. 1980, 5: 203-210.
    [105] Scherzer, J. Catalytic Materials. Relationship between Structure and Reactivity[J].ACS Symp. Ser. 1984, 248: 157-160.
    [106] Goyvaerts D., Martens J. A., Grobet P. J., et al.Factors Affecting the Formation of Extra-Framework Species and Mesopores During Dealumination of Zeolite Y[J]. Stud. Surf. Sci. Catal. 1991, 63: 381-395
    [107] Corma A., Navarro M. T. From micro to mesoporous molecular sieves: Adapting composition and structure for catalysis[J]. Stud. Surf. Sci. Catal. 2002, 142: 487-501.
    [108] Le Van Mao, R.; Vo, N. T. C.; Sjiariel, B.; Lee, L.; Denes, G. Mesoporous aluminosilicates: preparation from Ca-A zeolite by treatment with ammonium fluorosilicate[J]. J.Mater. Chem. 1992, 2(6): 595-599.
    [109] McQueen D, Chiche B H, Fajula F, Auroux A, Guimon C, Fitoussi F, Schulz P. A Multitechnique Characterization of the Acidity of Dealuminated Mazzite[J].J. Catal. 1996, 161(2): 587-596.
    [110] Ku¨hl, G. H. The coordination of aluminum and silicon in zeolites as studied by x-ray spectrometry [J]. J. Phys. Chem. Solids, 1977, 38(11): 1259-1263.
    [111] Coster D, Blumenfeld A L, Fripiat J J. Lewis Acid Sites and Surface Aluminum in Aluminas and Zeolites: A High-Resolution NMR Study [J]. J. Phys. Chem. 1994, 98(24): 6201-6211.
    [112] Bore′ave A, Auroux A, Guimon C. Nature and strength of acid sites in HY zeolites: a multitechnical approach [J]. Microporous Mater. 1997, 11(5-6):275-291.
    [113] Abbot, J. Role of Br?nsted and Lewis acid sites during cracking reactions of alkanes [J]. Appl. Catal. 1989, 47(1): 33-44.
    [114] Zholobenko V L, Kustov L M, Kazansky B V, Loeffler E, Lohse U, Oehman G. The structure of CoSAPO-34, containing i-propylamine as a template[J]. Zeolites, 1991, 11(2):132-134.
    [115] Yong Y, Gruver V, Fripiat J J. Role of Lewis Acidity in the Isomerization of n-Pentane and o-Xylene on Dealuminated H-Mordenites[J]. J. Catal. 1994, 150(2): 421-429.
    [116] Madsen, C.; Jacobsen, C. J. H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis[J]. Chem. Commun. 1999, 8: 673-674.
    [117] Jacobsen C J H, Madsen C, Janssens T V W, Jakobsen H J, Skibsted J. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy[J]. Microporous Mesoporous Mater. 2000, 39(1-2): 393-401.
    [118] Schmidt I, Madsen C, Jacobsen C J H. Confined Space Synthesis. A Novel Route to Nanosized Zeolites [J]. Inorg. Chem. 2000, 39(11):2279-2283.
    [119] Jacobsen C. J. H., Houzˇvicka J., Carlsson A, et al. Synthesis of novel zeolites SSZ-53 and SSZ-55 using organic templating agents derived from nitriles[J]. Stud.Surf. Sci. Catal. 2001, 135: 167-170.
    [120] Kim S S, Shah J, Pinnavaia T J. Colloid-Imprinted Carbons as Templates for the Nanocasting Synthesis of Mesoporous ZSM-5 Zeolite[J]. Chem. Mater. 2003, 15(8): 1664-1668.
    [121] Kustova M Y, Hasselriis P, Christensen C H. Mesoporous MEL-Type Zeolite Single Crystal Catalysts [J]. Catal. Lett. 2004, 96(3-4), 205-211.
    [122] Schmidt I, Krogh A, Wienberg K, Carlsson A, Brorson M, Jacobsen C. J. H. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite [J]. Chem. Commun. 2000, 21: 2157-2158.
    [123] Schmid I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals[J]. Chem. Mater. 2001, 13(12): 4416-4418.
    [124] Boisen A, Schmidt I, Carlsson A, Dahl S, Brorson M, Jacobsen C J H. Titanate nanotube thin films via alternate layer deposition [J]. Chem. Commun. 2003, 8: 958-959.
    [125] Zhu K K, Egeblad K, Christensen C H, Mesoorous Carbon Prepared from Carbohydrate as Hard Template for Hierachical Zeolites.European Journal of Inorganic Chemistry. 2007,25:3955-3960.
    [126] Kustova M, Egeblad K, Zhu K, Christensen C H, Versatile Route to Zeolite Single Crystals with Controlled Mesoporousity: in situ Sugar Decomposition for Templateing of Hierarchical Zeolites. Chem.Mater.,2007,19(12):2915-2917.
    [127] Sakthivel A, Huang S, Chen W, Lan Z, Chen K, Kim T, Ryoo R, Chiang A S T, Liu S. Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMs) with Zeolite Framework from Mesoporous Carbons (CMKs)[J]. Chem Mater. 2004, 16(16): 3168-3175.
    [128] Yang Z, Xia Y, Mokaya R. Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template [J]. AdV. Mater. 2004, 16(8): 727-732.
    [129] Hanzawa Y, Kaneko K, Yoshizawa N, Pekala R W, Dresselhaus M S. The Pore Structure Determination of Carbon Aerogels [J]. Adsorption, 1998, 4(3-4): 187-195.
    [130] Hanzawa Y, Hatori H, Yoshizawa N, Yamada Y. Structural changes in carbon aerogels with high temperature treatment [J]. Carbon, 2002, 40(4): 575-581.
    [131] Tao Y, Kanoh H, Kaneko K J. ZSM-5 Monolith of Uniform Mesoporous Channels [J]. J. Am. Chem. Soc. 2003, 125(20): 6044-6045.
    [132] Tao Y, Kanoh H, Kaneko K. Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating [J]. J. Phys. Chem. B 2003, 107(40): 10974-10976.
    [133] Xiao F S, Wang L F, Yin C Y et al. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesosale Cationic Polymers[J]. Angew. Chem. Int.Ed. 2006,45:3090-3093.
    [134] Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A, Hierachical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds[J]. Chem.Mater., 2006, 18: 2462-2464.
    [135] Wang H and Pinnavaia T J. MFI Zeolite with Small and Uniform Intracrystal Mesopores[J]. Angew.Chem.Int.Ed.2006, 45:7603-7606.
    [136] Wang J, Greoen J.C., Yue W, Zhou W and Coppers M O.Facile synthesis of ZSM-5 composites with hierarchical porosity[J]. J. Mater. Chem. 2008, 18,468-474.
    [137] Choi M, Cho H S, Srivastava R et al. Amphiphilica organosiliane-directed synthesis of crystalline zeolite with tunable mesoporosity[J].Nature materials,2006,5:718-723.
    [138] Hartmann M. Hierarchical Zeolites: A Proven strategy to combine shape selectivity with efficient mass transport [J]. Angew.Chem.Int.Ed.2004,43:5880-5882.
    [139] Srivastava R, Choi M and Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation[J].Chem.Commun.2006, 4489-4491.
    [140]杨秀雅等著,中国粘土矿物[M],地质出版社, 1996.
    [141] Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity[J]. Applied Clay Science, 2001, 20(2): 73-80.
    [142]朱华.高岭土应用的工业进展及现状.矿业工程,2005,3(6):25-26
    [143] Howell P A. Process for synthetic zeolite A [P]. US 3114603, 1963
    [144] Phillip Jameson M, Huege F R. Method for producing synthetic sodium aluminosilicate ion-exchange material from calcined kaolin clay [P]. US 4034058,1977
    [145] Butter S A, Kuznicki S M. Synthesis of maximum aluminum X zeolites [P]. US 4606899, 1986
    [146] Aray A. Aluminosilicates [P]. US 5362466,1994
    [147]刘永梅,李德宝,王晓钟等.以煤基工业废料为原料固相法合成小粒径圆形A型沸石分子筛.日用化学工业,1993 (3) :1-4
    [148]董少春,董家禄,李勇等.高岭土合成沸石研究进展.非金属矿, 2005, 28(增刊): 44-46
    [149]刘宏海,张永明,郑淑琴等.一种高岭土合成分子筛的方法[P].CN 1334142A,2002
    [150]周继红,闵恩泽,杨海鹰等.用高岭土合成的纳米级Y型沸石及其制备方法[P].CN 1533982A, 2004-10-6.
    [151] Reid, Paul Ian. Manufatrue of zeolites [P]. EP 0068817,1983
    [152]冯芳霞,窦涛,石岩竣.以煤矸石为原料合成ZSM-35沸石[J].石油学报, 1997, 13(4): 104-108
    [153] Rocha J., Kllnowski J., Adams J. Synthesis of zeolite Na-A from metakaolinite revisited [J]. J. Chem. Soc. Faraday Trans.1991, 87: 3091-3097.
    [154]黄焱球,程守田,高广立.”偏高岭石-碱-水”体系中4A沸石晶体生长规律及其机理探讨[J].矿物岩石,1997,17(1):17-22
    [155]王建,董家禄,刘杨等.偏高岭土合成4A沸石机理的研究[J].无机化学学报,2000,16(1):31-36
    [156]龙英才,林敏.偏高岭土转换为A沸石的结晶动力学[J].复旦学报(自然科学版),1994,33(5):591-598
    [157]刘钦甫,许红亮,杨晓杰.煤系高岭岩合成4A分子筛过程及机理研究[J].中国非金属矿工业导刊,1999,1:18-20
    [158]高俊,乔淑萍,简丽等.高岭土合成4A沸石晶化历程[J].应用化学,1999,16(6):53-55
    [159]高俊,高智,简丽等.偏高岭土水热合成4A沸石晶化行为的研究[J].无机化学学报,2001,17(5):751-754
    [160]李凯琦,韩星霞.煤系高岭岩合成分子筛的转化机理[J].煤炭学报,2003,28(3):294-298
    [161] Walter L. H., Frank J. D. Zeolite catalyst and preparation [P].US3663165. 1972-05-16.
    [162]许名灿,程谟杰,谭大力等.沸石分子筛在高岭土微球上的生长[J].催化学报,2001,22(1):31-34
    [163]段长艳,庞新梅,高雄厚,等.一种裂化催化剂的制备方法[P].CN 1861754A, 2006-11-15.
    [164]申宝剑,郑俊鹤,高雄厚,等.一种高岭土基质复合分子筛及其制备方法[P].CN 1951567A, 2007-4-25.
    [165]高雄厚,刘宏海,段长艳,等.一种多产柴油的催化裂化助剂的方法[P].CN 1683474A, 2005-10-19.
    [166] Altomare C. A. Method of making seed solution useful in zeolite catalyst manufacture [P]. EP0204455A2, 1986-10-12.
    [167] Brown S. M, Durante V A , Reagan W J , et al. Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and method for making[P].US44939021, 1983-2-25.
    [168] Walter L. H, Jr., M, Frank J. D. Hydrocarbon conversion process [P].US3932268A1, 1976-1-13.
    [169] Walter L. H, Jr., M, Frank J. D. Microspherical zeolitic cracking catalyst [P]. US3657154A1, 1972-4-18.
    [170]周继红,闵恩泽,杨海鹰等.用高岭土合成的纳米级Y型沸石及其制备方法[P].CN 1533982A, 2004-10-6.
    [171]苏建明,达建文,刘剑利,等.高岭土型流化催化裂化催化剂的制备方法[P]. CN 1429882A, 2003-7-16.
    [172] Walter L. H, Jr., M, Frank J. D. Microspherical zeolitic molecular sieve composite catalyst and preparation thereof [P]. US3647718A1, 1972-3-7.
    [173] Walter L. H, Jr., M, Frank J. D. Microspherical zeolitic molecular sieve compositecatalyst and preparation thereof [P]. US3506594A1, 1970-4-14.
    [174] Walter L. H, Jr., M, Frank J. D. Fluid catalyst and preparation thereof[P]. US3503900A1, 1970-3-31.
    [175]陈俊武.催化裂化工艺与工程[M],中国石化出版社,2004
    [176]郑淑琴,常小平,高雄厚.高岭土原位晶化体系中焙烧微球特性研究[J].非金属矿.2002,25(6):5-7
    [177]郑淑琴,羊建国,高雄厚.贵州高岭土原位晶化制备全白土型FCC催化剂的探索性研究[J].中国非金属矿工业导刊,2003,(2):26-29
    [178]郑淑琴,豆祥辉,高雄厚.韩城高岭土的性质及其原位晶化所制FCC催化剂的研究[J].石油炼制与化工,2004,35(4):23-27
    [179]郑淑琴,丁伟,高雄厚.高岭土原位合成Y型沸石过程中的吸附研究[J].无机盐工业,2006,38(1):26-29
    [180]郑淑琴,王智峰,谭争国等.高岭土原位晶化合成Y型沸石的特性研究[J].石化技术与应用,2006,24(3):104-106
    [181] Zheng S Q, Sun S H,Wang Z F et al.Suzhou kaolin as a FCC catalyst[J].Clay Minerals, 2005, 40,303-310
    [182]申建华,毛学文,原所良等.高岭土微球原位合成NaY沸石体系中的非原位结晶反应[J].石油学报(石油加工),1996,12(4):20-27
    [183]许名灿.高岭土微球上原位晶化纳米沸石分子筛Y.中国科学院大连化学物理研究所,论文,2000
    [184] Zuo L H, Wang Y M, Liu G H. Process for synthesizing ZSM-5 molecular sieve by using NaY mother liquor [P]. CN 1194943,1998
    [185]孙书红,马建泰,庞新梅等.高岭土微球合成ZSM-5沸石及其催化裂化性能[J].硅酸盐学报, 2006, 34(6):757-761
    [186] Sun S.H., Ma J.T., Gao X.H. Synthesis of ZSM-5 on kaolin microspheres in the absence of an organic amine template [J]. Clay Minerals, 2007,42: 203-211.
    [187] Francis G. Dwyer, West Chester, Albert B, Schwartz, Philadelphia etal. Preparation of zeolites [P]. US 4091007, 1978-5-23.
    [188] Pochen Chu, Gary M.Pasquale, Sxhell. Octane enhancement and total liquid product yield improvements in catalytic cracking using in-situ crystallized ZSM-5 clay aggregates[P]. US 4522705,1985
    [189] Rosinski, Edward Joseph. Process for preparing discrete, zeolite-containing particles [P]. EP 0156595, 1985
    [190] McWilliams J P, Woodbury N.J. Preformed matrices containing zeolites [P]. US 5145659,1992
    [191] Murrell L L., Overbeek R A., Chang Y F. Method for making molecular sieves and novel molecular sieves compositions [P]. US 6004527, 1999-12-21
    [192] Xu M T, Macaoay J. In-situ ZSM-5 Synthesis [P]. US 0181933, 2005
    [193] Degnan T. F., Chitnis G. K., Schipper P. H. History of ZSM-5 fluid catalytic cracking additive development at Mobil [J]. Microporous Mesoporous Mater, 2000, 35-36:245-253
    [194] Abul-Hamayel M A, Aitani A M, Saeed M R. Enhancement of Propylene Production in a Downer FCC Operation using a ZSM-5 Additive [J]. Chem Eng Technol,2005, 28(8):923-929.
    [195] Akolekar D., Chaffee A., Howe R. F. The transformation of kaolin to low-silica X zeolite[J]. Zeolite, 1997, 19(5-6):359-365.
    [196] Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity[J]. Applied Clay Science, 2001, 20(2): 73-80.
    [197] Alkan M, Hopa C, Yilmaz Z, Guler H. The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite[J]. Microporous and Mesoporous Mate., 2005, 86: 176-184.
    [198]陈桂花,梁华定. Sol-Gel法制备莫来石粉末的研究[J].傅山陶瓷, 107(11):9-11.
    [199] Lambert J.F., Millman W. S., Fripiat J. J. Revisiting kaolinite dehydroxylation: a silicon-29 and aluminum-27 MAS NMR study [J]. J Am Chem Soc, 1989, 111(10):3517-3522
    [200] Akolekar D., Chaffee A., Howe R. F. The transformation of kaolin to low-silica X zeolite[J]. Zeolite, 1997, 19(5-6):359-365.
    [201] Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids principles, methodology and applications [M]. Academic Press, San Diego(1999)
    [202] Sang S Y, Chang F X, Liu Z M, He C Q, He Y L, Xu L. Difference of ZSM-5 zeolites synthesized with various templates [J]. Catalysis Today, 2004, 729: 93-94.
    [203] Madani A, Aznar A, Sanz J, Serratosa J M. Silicon-29 and aluminum-27 NMR study of zeolite formation from alkali-leached kaolinites: influence of thermal preactivation [J]. J Phys Chem, 1990, 94(2):760-765.
    [204]马忠林,赵天波,宗保宁. ZSM-5/丝光沸石混晶分子筛的合成、表征及性能研究[J].石油学报, 2004, 20(2):21-27.
    [205] Chandrasekhar S, Pramada PN . Kaolin-based zeolite Y, a precursor for cordierite ceramics [J]. Appl. Clay Sci. , 2004(3-4), 27:187-198
    [206] Markovic S, Dondur V, Dimitrijevic R. FTIR spectroscopy of framework aluminosilicate structures: carnegieite and pure sodium nepheline[J]. J Mol. Struct. 2003,654(1-3):223-234.
    [207] Johnston C T, Bish D L, Eckert J, et al. Infrared and Inelastic Neutron Scattering Study of the 1.03- and 0.95-nm Kaolinite-Hydrazine Intercalation Complexes[J]. J Phys Chem B, 2000, 104(33):8080-8088.
    [208] Yariv S, Lapides I, Michaelian K H, et al. Thermal intercalation of alkali halides into kaolinite[J]. J Them Anal Calorim,1999, 56:865-884.
    [209] Saikia N J, Bharali D J, Sengupta P, Bordoloi D, Goswamee R L, Saikia P C, Bothaku, P C. Characterization, beneficiation and utilization of a kaolinite clay from Assam, India[J]. Applied Clay Science,2003, 24: 93-103.
    [210]刘欣梅,阎子峰,王槐平.由煤系高岭土原位合成NaY分子筛[J].石油大学学报, 2002, 26(5):94-100.
    [211] Kirschhock C E A, Ravishankar R, Verspeurt F et al. Identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system [J]. J Phys Chem B,1999,103(24):4965-4971.
    [212]孙洪敏,杨为民,陈庆龄.晶化时间对ZSM-5分子筛物化性质及催化性能的影响[J].催化学报,2001,22(3):291-293.
    [213]王滨,高强,高建东,等.晶化时间对ZSM-23分子筛物化性质及催化C4烯烃裂解性能的影响[J].石油炼制与化工,2005, 36(4):10-14.
    [214] Cheng Y, Wang L J, Li J S, Yang Y C. Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template[J]. Materials Letters, 2005,59(27):,3427-3430.
    [215] Dight L B, Leskowicz M A, Deeba M. New matrix improves FCC catalyst selectivity. Proceedings of the NPRA Annual Meeting, San Antonio, Texas, USA, 1991 , PaperAM-91-53.
    [216] Dight L, Leskowicz M A, Bogert D C. High Zeolite Content FCC Catalysts and Method for Making Them [P]. EP 0369629, 1990.
    [217] Fernando G C, Santiago E, Jose C. High temperature reaction of kaolin with sulfuric acid [J]. Ind. Eng.Chem.Res.2003,41,4168-4173.
    [218] Renzo F D. Zeolites as tailor-made catalysts: Control of the crystal size [J]. Catalysis today,1998,41(1):37-40.
    [219] Jacobs P A, Beyer H K, Valyon J. Properties of the end members in the pentasil-family of zeolites: characterizaation as adsorbents [J]. Zeolites, 1981, 1(3):161-168.
    [220] Coudrier G, Naccache , Vedrine J C. Uses of i.r. spectroscopy in identifying ZSM zeolite structure [J]. J. Chem. Soc.,Chem. Commun.,1982, (24):1413-1415.
    [221] Alim A, Brisdon B, Thomas W J. Synthesis, characterization and catalytic activity of ZSM-5 zeolites having variable silicon-to-aluminum ratios[J]. Applied Catalysis A:General , 2003, 252: 149-162.
    [222] Landau M V, Zaharur N, Herskowitz M. Silica-supported small crystals of ZSM-5 zeolite[J]. Applied Catalysis A: General, 1994,115: L7-L14.
    [223]王殿中,刘冠华,舒兴田,何鸣元,田素贤,冯强.一种高硅ZSM-5分子筛的合成方法:中国,1194942A[P].1998-10-7.
    [224] Mitsyuk B A, Gorogostskaya L I and Rastrenko A I. The nature and properties of the new varieties of silica[J]. Geochemistry international, 1976,6:803-814.
    [225]何文,沈建兴,韩丽合.合成莫来石纳米粉的红外吸收光谱研究[J].无机盐工业, 2000,32(6):6-8.
    [226]苏建明,刘文坡,刘剑利,吴莱萍.高硅铝比ZSM-5分子筛的合成及催化裂化性能的研究[J].石油炼制与化工,2004,35(4):18-22
    [227]余少兵,李永红,陈洪钫.合成β沸石的研究[J].天津大学学报, 2002, 35 (2),91-94.
    [228] Feoktistova N.N., Zhdanov S.P., Lutz W., et al. On the kinetics of crystallization of silicalite I [J].Zeolites,1989, 9(2):136-139.
    [229] Cundy C.S., Lowe B.M., Sinclair D.M.J. Crystallisation of zeolitic molecular sieves:direct measurements of the growth behaviour of single crystals as a function of synthesis conditions[J]. Faraday Discuss. 1993, 95: 235-252.
    [230] Directed Synthesis of Organic/Inorganic Composite Structures, G. D. Stucky, Q. Huo, A. Firouzi, B. F. Chmelka, S. Schacht, I. G. Voigt-Martin, and F. Schüth, in Progress in Zeolite and Microporous Materials (Proc. 11th International Zeolite Conference, Seoul, August 1996), H. Chon, S-K. Ihm and Y. S. Uh, eds., Studies in Surface Science and Catalysis, Volume 105, Elsevier, Amsterdam, 1997, pp. 3-28
    [231] Mostowicz R., Berak J.M., Factors Influencing the Crystal Morphology of ZSM-5 Type Zeolites [J]. Stud. Surf. Sci. Catal. 1985, 24: 65-72.
    [232] Ding L., Zheng Y., Hong Y, Ring Z. Effect of particle size on the hydrothermal stability of zeolite beta [J]. Micropor. Mesopor. Mater. 2007, 101(3):432-439
    [233] Vu D., Miyamoto M., Nishiyama N., et al. Ueyama. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites [J]. Micropor. Mesopor. Mater. 2008,115(1-2): 106-112
    [234] Bregolato M., Bolis V., Busco C., et al. Methylation of phenol over high-silica beta zeolite: Effect of zeolite acidity and crystal size on catalyst behaviour[J].Journal of Catalysis, 2007,45(2): 285-300
    [235] Praserthdam P., Mongkolsiri N., Kanchanawanichkun P. Effect of crystal size on the durability of Co/HZSM-5 in selective catalytic reduction of NO by methane[J]. Catalysis Communications, 2002, 3 (5): 191-197.
    [236] Li Q., Creaser D., Sterte J, The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis [J]. Micropor. Mesopor. Mater. 1999, 31(1-2):141-150.
    [237] Li Q., Mihailova B., Creaser D., et al. The nucleation period for crystallization of colloidal TPA-silicalite-1 with varying silica source[J]. Micropor. Mesopor. Mater. 2000,40 (1-3): 53-62.
    [238] Larlus O., Valtchev V., Patarin J., et al. Preparation of silicalite-1/glass fiber composites by one- and two-step hydrothermal syntheses[J]. Micropor. Mesopor. Mater. 2002, 56(2):175-184.
    [239] Kim S. D., Noh S. H. , Park J. W., et al. Organic-free synthesis of ZSM-5 with narrowcrystal size distribution using two-step temperature process [J]. Micropor. Mesopor. Mater. 2006,92 (1-3): 181-188
    [240] Sun H., Wang J, Hu J, Zhou J. Rapid synthesis of small crystal FeZSM-5 by a two-stage varying-temperature technique [J].Catal. Lett. 2000, 69 (3-4) 245-250.
    [241] Li Y., Zhang X., Wang J. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis [J].Sep. Purif. Technol. 2001, 25 (1-3): 459-457.
    [242] Roland T., Schmidt H., Tissler A., et al. Effect of age temperature on the synthesis of zeolite [J]. Eur. Patent Appl. 1990, 402 : 639-645.
    [243] Roland T., Tissler A. Ageing effect during the crystallization of zeolite[J]. Eur. Patent Appl. 1990, 402: 801-807.
    [244] Jacobs, P.A., Martens, J.A. Introduction to acid catalyst with zeoites in hydrocarbon reactions. Stud.Surf.Sci.Catal.1991, 58, 445-496.
    [245] Liu, C., Deng, Y., Pan, Y., Gu, Y., Qiao, B., Gao, X. Effect of ZSM-5 on the aromatization performance in cracking catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2004, 215 (1-2), 195-199
    [246] Yuan J. J., Gevert B. S. Alkylation of benzene with ethanol over ZSM-5 catalyst with different SiO2/Al2O3 ratios [J]. Indian Journal of Chemical Technology.2004, 11(3):337-345.
    [247] Abul-Hamayel M A, Aitani A M, Saeed M R. Enhancement of Propylene Production in a Downer FCC Operation using a ZSM-5 Additive [J]. Chem Eng Technol,2005, 28(8):923-929.
    [248] Herrmann, C., Haas, J.,Fetting, F. Effect of the crystal size on the activity of ZSM-5 catalysts in various reactions [J]. Appl.Catal.1987, 35 (2):299-310.
    [249] Froment G. F. Modeling of catalyst deactivation [J]. Appl. Catal., A, 2001,212 (1-2):117-128.
    [250] Jansen J. C., van der Gaag F. J., van Bekkum H. Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy[J]. Zeolites, 1984, 4(4): 369-372.
    [251] Kresge C.T., Leonowicz M.E., Roth W.I., et al. Ordered mesoorous molecular sieves synthesized by a liquid crystal template mechanism [J].Nature, 1992,359: 710-712.
    [252] L. Zhao, B. J. Shen, J.S.Gao and C.M.Xu. Investigation on the mechanism of diffusionin mesopore structured ZSM-5 and improved heavy oil conversion [J].Journal of Catalysis, 2008, 258(1): 228-234.
    [253] Katada N., Igi H., Kim J., et al. Determination of the acidic properties of zeolite by theretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J].J. Phys. Chem. B, 1997, 101 (31): 5969-5997.
    [254] Niwa M., Katada N. Measurements of acidic property of zeolites by temperature programmed desorptin of ammonia [J]. Catal. Surv. Jpn. 1997, 1: 215-226.
    [255] Yada M, Takenaka H, Machida M et al. Mesostructured gallium oxides template by dodecyl sulfate as semblies, J Chem Soc Dalton Trans. 1998:1547-1550
    [256] Braun P V, Osenar P, Stupp S I. Semiconducting superlattices template by molecular assemblies, Nature.1996,380:325-328.
    [257] Velev O D, Jede T A, Lobo RF et al. Porous silica via colloidal crystallization, Nature. 1997, 389:447-448.
    [258] Myers, D. Surfactant Science and Technology; VCH: New York,1992.
    [259] Lawrence, M. J. Surfactant Systems: Their use in drug delivery [J]. J. Chem. Soc. Rev. 1994, 23,417-424.
    [260] Kacirek H, Lechert H. Investigation on the growth of zeolites type NaY, J. Phy.Chem.1975,79: 1589-1593.
    [261] Kacirek H, Lechert H. Rates of crystallization and a model for the growth of NaY zeolite, J. Phy.Chem.1976,80:1291-1296.
    [262] Tiddy G. J. T. Surfactant-water liquid crystal phase [J]. Phys.Rep.1980,57(1): 1-46.
    [263] Winsor P. A. Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure, and theoretical significance of liquid crystalline solutions [J]. Chem.Rev. 1968,68(1): 1-40.
    [264] H. Feng, Y.H.Chen, C.Y.Li, H.H.Shan,In-situ synthesis of ZSM-5 on silica gel and studies on its catalytic activity. Journal of Fuel Chemistry and Technology, 36(2008), 144-150.
    [265] Huang L.M., Guo W.P., Deng P., et al. Investigation of synthesizing MCM-41/ZSM-5 composites [J]. J. Phys.Chem.B. 2000, 104(13): 2817-2813.
    [266] Quann R.J., Green L. A., Tabak S. A., et al. Chemistry of olefin oligomerization overZSM-5 catalyst[J]. Ind. Eng. Chem. Res., 1988, 27 (4), 565-570.