催化氧化合成过氧乙酸的本征动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Intrinsic kinetics of synthesis of peracetic acid by catalytic oxidation
  • 作者:丁榕 ; 张光旭 ; 石楷华 ; 汪义超 ; 叶云涛
  • 英文作者:DING Rong;ZHANG Guangxu;SHI Kaihua;WANG Yichao;YE Yuntao;School of Chemistry,Chemical Engineering and Life Sciences,Wuhan University of Technology;
  • 关键词:本征动力学 ; 催化氧化 ; Mg/Sn/W ; 复合氧化物 ; 过氧乙酸
  • 英文关键词:intrinsic kinetics;;catalytic oxidation;;Mg/Sn/W;;composite oxides;;peracetic acid
  • 中文刊名:华中师范大学学报(自然科学版)
  • 英文刊名:Journal of Central China Normal University(Natural Sciences)
  • 机构:武汉理工大学化学化工与生命科学学院;
  • 出版日期:2019-04-12
  • 出版单位:华中师范大学学报(自然科学版)
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(21676206);; 2018湖南省创新创业技术投资专项项目
  • 语种:中文;
  • 页:70-77
  • 页数:8
  • CN:42-1178/N
  • ISSN:1000-1190
  • 分类号:TQ223.25
摘要
过氧乙酸是一种用途广泛的有机过氧化物.利用固体酸催化剂催化氧化乙酸从而间接氧化环己酮合成ε-己内酯是一种绿色生产过程,其中催化氧化乙酸生成过氧乙酸是关键步骤.借助化学滴定分析法,使用Mg/Sn/W复合氧化物为催化剂,以H2O2为氧化剂,以乙酸丁酯为共沸剂研究氧化乙酸生成过氧乙酸过程的本征动力学及过程中H2O2分解动力学.当催化剂粒径为160~200目时,内扩散影响可基本消除,当搅拌速度大于800r·min-1时,外扩散可以忽略.使用幂函数型模型对动力学过程进行描述,研究结果表明,过氧乙酸生成反应本征动力学速率方程对H2O2、乙酸均为一级,反应活化能为6.76141×104 J·mol-1,指前因子为6.78090×106;适用于该反应过程体系的H2O2分解反应动力学的反应级数为1.59345,反应活化能为7.59041×104 J·mol-1,指前因子为1.08795×108.
        Peracetic acid is a widely used organic peroxide.Catalytic oxidation of acetic acid by solid acid catalyst to indirectly oxidize cyclohexanone for synthesizingε-caprolactone is a green production process,in which catalytic oxidation of acetic acid to peroxyacetic acid is a key step.The intrinsic kinetics of synthesis of peracetic acid and H_2O_2 decomposition kinetics were investigated by chemical titration analysis,using Mg/Sn/W composite oxide as catalyst,H_2O_2 as oxidant and butyl acetate as entrainer.Internal diffusion effect was basically eliminated when the catalyst particle size is 160 to200 mesh and external diffusion effect was neglected when stirring speed is greater than800 r· min-1.The power function model was used to describe the kinetic process.Research results showed that the intrinsic kinetic rate equation of peracetic acid formation reaction is of first order for H_2O_2 and acetic acid,with the activation energy of6.761141×104 J·mol-1,and the pre-exponential factor of 6.78090×106.The reaction order of H_2O_2 decomposition reaction kinetic suitable for this reaction process system is1.59335,with the activation energy of 7.59041×104 J·mol-1,and the pre-exponential factor of 1.08785×10~8.
引文
[1]ADAM W.Peroxide Chemistry[M].Hoboken:Wiley&Sons,2005.
    [2]RAPPOPORT Z.The Chemistry of Peroxides[M].Hoboken:Wiley,2006.
    [3]KITIS M.Disinfection of wastewater with peracetic acid:a review[J].Environment International,2004,30(1):47-55.
    [4]AGUILER A F,TOLVANEN P,ERANEN K,et al.Epoxidation of oleic acid under conventional heating and microwave radiation[J].Chemical Engineering&Processing Process Intensification,2016,102:70-87.
    [5]张腾云,钟理.过氧乙酸的合成及工业应用研究进展[J].化工进展,2007,26(2):194-197.ZHANG T Y,ZHONG L.Progress of synthesis of peracetic acid and its industrial application[J].Chemical Industry and Engineering Progress,2007,26(2):194-197.(Ch).
    [6]ANDO W.Organic Peroxides[M].Toronto:John Wiley&Sons,1992.
    [7]PRALUS M,LECOQ J C,SCHIRMANN J P.Process for the preparation of epsilon-caprolactone:US 4994583[P].1991-02-19.
    [8]闫捷,赵立红,宋灿,等.环己酮绿色氧化制备ε-己内酯的研究进展[J].化工进展,2017,36(4):1424-1428.YAN J,ZHAO L H,SONG C,et al.Research progress in preparation ofε-caprolactone by cyclohexanone green oxidation[J].Chemical Industry and Engineering Progress,2017,36(4):1424-1428.(Ch).
    [9]张光旭,张红波,任晓聪.环己酮氧化合成ε-己内酯Mg/Sn复合氧化物催化剂的再生研究[J].武汉理工大学学报,2014(5):28-31,42.ZHANG G X,ZHANG H B,REN X C.Regeneration of Mg/Sn Composite Oxide Catalyst on Synthesis ofε-caprolactone over Oxidation of Cyclohexanone[J].Journal of Wuhan University of Technology,2014(5):28-31,42.(Ch).
    [10]张光旭,欧华强,胡昌林,等.固体酸催化合成ε-己内酯的研究Ⅰ.催化剂的表征及其催化性能[J].石油化工,2011,40(5):486-491.ZHANG G X,OU H Q,HU C L,et al.Synthesis ofε-caprolactone over solid acid catalystsⅠ.Characterization and activity of the catalysts[J].Petrochemical Technology,2011,40(5):486-491.(Ch).
    [11]ZHANG G X,REN X C,ZHANG H B,et al.MgO/SnO2/WO3as catalysts for synthesis ofε-caprolactone over oxidation of cyclohexanone with peracetic acid[J].Catalysis Communications,2015,58:59-63.
    [12]李莹,邓军,李胜楠,等.W/Sn/Mg复合氧化物催化合成过氧乙酸的工艺研究[J].华中师范大学学报(自然科学版),2017,51(1):56-61.LI Y,DENG J,LI S N,et al.The synthesis and the technological study of peroxyacetic acid catalyzed by composite oxides W/Sn/Mg[J].Journal of Central China Normal University(Natural Sciences),2017,51(1):56-61.(Ch).
    [13]PHILLIPS B,JR F C F,STARCHER P S.A new synthesis of peracetic acid[J].Journal of the American Chemical Society,1957,79(22):5982-5986.
    [14]HILL C G,ROOT T W.Introduction to Chemical Engineering Kinetics and Reactor Design[M].Hoboken:Wiley,2014.
    [15]HAN Y,LI S N,DING R,et al.Baeyere-Villiger oxidation of cyclohexanone catalyzed by cordierite honeycomb washcoated with Mg-Sn-W composite oxides[J].Chinese Journal of Chemical Engineering,2018.
    [16]LLLAMAS R,JIMNEZ-SANCHIDRIN C,RUIZ J R.Environmentally friendly Baeyer-Villiger oxidation with H2O2/nitrile over Mg(OH)2 and MgO[J].Applied Catalysis B:Environmental,2007,72(1):18-25.
    [17]李莹.催化氧化环己酮合成ε-己内酯过程的工艺优化[D].武汉:武汉理工大学,2017.LI Y.Optimization of the Synthesis of Epsilon-caprolactone by Catalytic Oxidation of Cyclohexanone[D].Wuhan:Wuhan University of Technology,2017.(Ch).
    [18]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003.GUO H X.Applied Chemical Kinetics[M].Beijing:Chemical Industry Press,1993.(Ch).
    [19]DUL'NEVA L V,MOSKVIN A V.Kinetics of formation of peroxyacetic acid[J].Russian Journal of General Chemistry,2005,75(7):1125-1130.
    [20]郑建美.金属离子影响过氧乙酸分解速度的探讨及对策[J].化学工程与装备,2007(4):8-12.ZHENG J M.To study about the effects of metallic ions on the decomposing rate of peracetic acid and the solution[J].Chemical Engineering&Equipment,2007(4):8-12.(Ch).
    [21]刘大壮,杨碧光.化工工艺开发中的实验设计与数据处理[M].郑州:河南科学技术出版社,1993.LIU D Z,YANG B G.Experimental Design and Data Processing in Chemical Process Development[M].Zhengzhou:Henan Science&Technology Press,1993.(Ch).