水稻产量性状基因克隆及应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloning and application of yield traits gene in rice
  • 作者:李世鹏 ; 李会云 ; 郭明欣 ; 赵旭升
  • 英文作者:LI Shi-peng;LI Hui-yun;GUO Ming-xin;ZHAO Xu-sheng;College of Life Sciences,Luoyang Normal University;
  • 关键词:水稻 ; 产量 ; 功能基因 ; 分子育种
  • 英文关键词:rice;;yield traits;;function gene;;molecular breeding
  • 中文刊名:湖北农业科学
  • 英文刊名:Hubei Agricultural Sciences
  • 机构:洛阳师范学院生命科学学院;
  • 出版日期:2019-08-25
  • 出版单位:湖北农业科学
  • 年:2019
  • 期:16
  • 基金:河南省自然科学基金项目(162300410198);; 河南省科技开放合作计划项目(172106000049)
  • 语种:中文;
  • 页:7-11
  • 页数:5
  • CN:42-1255/S
  • ISSN:0439-8114
  • 分类号:S511
摘要
水稻是中国重要的粮食作物之一,在人口飞速增长和耕地面积急剧下降的今天,通过遗传改良提升其产量和品质显得尤其重要。随着分子生物学和基因组学的发展,大量产量性状基因通过图位克隆和突变体筛选等方法得到克隆,产量形成分子调控逐步被解析,部分功能基因在育种中得到运用。对上述内容进行了综述,并对该领域的研究方向进行了展望。
        Rice is one of the important food crops in China. In the case of rapid population growth and a sharp decline in arable land, it is particularly important to improve its yield and quality through genetic improvement. With the development of molecular biology and genomics, a large number of yield trait genes were cloned by map-based cloning and mutant selection and so on. The molecular regulation of yield formation was gradually analyzed, and some functional genes were used in rice breeding. The above contents and looks forward to the research direction in this field were mainly summarized.
引文
[1]郦娟.水稻突变体库的筛选及控制水稻开花和粒重基因HGW的功能研究[D].武汉:华中农业大学,2012.
    [2]WANG D Y,XU C M,YUAN J,et al.Cha nges in agronomic traits of indica hybrid rice during genetic improvement[J].Chinese journal of rice science,2010,24(2):157-161.
    [3]JIANG Y H,CAI Z X,XIE W B,et al.Rice functional genomics research:Progress and implications for crop genetic improvement[J].Biotechnology advances,2012,30(5):1059-1070.
    [4]LIANG W H,SHANG F,LIN Q T,et al.Tillering and panicle branching genes in rice[J].Gene,2014,537(1):1-5.
    [5]WANG Y H,LI J.Branching in rice[J].Current opinion in plant biology,2011,14(1):94-99.
    [6]LI X,QIAN Q,FU Z,et al.Control of tillering in rice[J].Nature,2003,422:618-621.
    [7]LIN Q B,WANG D,DONG H,et al.Rice APC/CTEcontrols tillering by mediating the degradation of MONOCULM 1[J].Nature communications,2012,3:752.
    [8]XU C,WANG Y H,YU Y C,et al.Degradation of MONOCULM1 by APC/CTAD1regulates rice tillering[J].Nature communications,2012,3:750.
    [9]KOMATSU K,MAEKAWA M,UJIIE S,et al.LAX and SPA:Major regulators of shoot branching in rice[J].Proceedings of the national academy of sciences,2003,100(20):11765-11770.
    [10]TABUCHI H,ZHANG Y,HATTORI S,et al.LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J].The plant cell,2011,23(9):3276-3287.
    [11]ISHIKAWA S,MAEKAWA M,ARITE T,et al.Suppression of tiller bud activity in tillering dwarf mutants of rice[J].Plant and cell physiology,2005,46(1):79-86.
    [12]YAN H F,SAIKA H,MAEKAWA M,et al.Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J].Genes&genetic systems,2007,82(4):361-366.
    [13]ARITE T,UMEHARA M,ISHIKAWA S,et al.d14,a strigolactone-insensitive mutant of rice,shows an accelerated outgrowth of tillers[J].Plant and cell physiology,2009,50(8):1416-1424.
    [14]ARITE T,IWATA H,OHSHIMA K,et al.DWARF10,an RMS1/MAX4/DAD1 ortholog,controls lateral bud outgrowth in rice[J].The plant journal,2007,51(6):1019-1029.
    [15]ZOU J,ZHANG S,ZHANG W,et al.The rice HIGH-TILLER-ING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J].The plant journal,2006,48(5):687-698.
    [16]JIANG L,LIU X,XIONG G S,et al.DWARF53 acts as a repressor of strigolactone signalling in rice[J].Nature,2013,504:401-405.
    [17]ZHOU F,LIN Q B,ZHU L H,et al.D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J].Nature,2013,504:406-410.
    [18]ITOH J I,HASEGAWA A,KITANO H,et al.A recessive heterochronic mutation,plastochron1,shortens the plastochron and elongates the vegetative phase in rice[J].The plant cell,1998,10(9):1511-1521.
    [19]KAWAKATSU T,ITOH J I,MIYOSHI K,et al.PLASTOCHRON2regulates leaf initiation and maturation in rice[J].The plant cell,2006,18(3):612-625.
    [20]MIMURA M,NAGATO Y,ITOH J I.Rice PLASTOCHRONgenes regulate leaf maturation downstream of the gibberellin signal transduction pathway[J].Planta,2012,235(5):1081-1089.
    [21]JIAO Y,WANG Y,XUE D,et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nature genetics,2010,42(6):541-544.
    [22]MIURA K,IKEDA M,MATSUBARA A,et al.OsSPL14 promotes panicle branching and higher grain productivity in rice[J].Nature genetics,2010,42(6):545-549.
    [23]LU Z,YU H,XIONG G,et al.Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITEC-TURE1 reveals a complex network regulating rice plant architecture[J].The plant cell,2013,25(10):3743-3759.
    [24]ZHANG L,YU H,MA B,et al.A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J].Nature communications,2017,8:14789.
    [25]ASHIKARI M,SAKAKIBARA H,LIN S,et al.Cytokinin oxidase regulates rice grain production[J].Science,2005,309(5735):741-745.
    [26]HUANG X,QIAN Q,LIU Z,et al.Natural variation at the DEP1 locus enhances grain yield in rice[J].Nature genetics,2009,41(4):494-497.
    [27]LI S B,QIAN Q,FU Z M,et al.Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J].The plant journal,2009,58(4):592-605.
    [28]XUE W Y,XING Y Z,WENG X Y,et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J].Nature genetics,2008,40(6):761-767.
    [29]OSUGI A,ITOH H,IKEDA-KAWAKATSU K,et al.Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice[J].Plant physiology,2011,157(3):1128-1137.
    [30]YAN W H,WANG P,CHEN H X,et al.A major QTL,Ghd8,plays pleiotropic roles in regulating grain productivity,plant height,and heading date in rice[J].Molecular plant,2011,4(2):319-330.
    [31]XING Y Z,ZHANG Q F.Genetic and molecular bases of rice yield[J].Annual review of plant biology,2010,61:421-442.
    [32]ASHIKARI M,WU J Z,YANO M,et al.Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes theα-subunit of GTP-binding protein[J].Proceedings of the national academy of sciences,1999,96(18):10284-10289.
    [33]FUJISAWA Y,KATO T,OHKI S,et al.Suppression of the heterotrimeric G protein causes abnormal morphology,including dwarfism,in rice[J].Proceedings of the national academy of sciences,1999,96(13):7575-7580.
    [34]HONG Z,UEGUCHI-TANAKA M,UMEMURA K,et al.A rice brassinosteroid-deficient mutant,ebisu dwarf(d2),is caused by a loss of function of a new member of cytochrome P450[J].The plant cell online,2003,15(12):2900-2910.
    [35]TANABE S,ASHIKARI M,FUJIOKA S,et al.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced seed length[J].The plant cell,2005,17(3):776-790.
    [36]YAMAMURO C,IHARA Y,WU X,et al.Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J].The plant cell,2000,12(9):1591-1605.
    [37]DUAN P,RAO Y,ZENG D,et al.SMALL GRAIN 1,which encodes a mitogen-activated protein kinase kinase 4,influences grain size in rice[J].The plant journal,2014,77(4):547-557.
    [38]TONG H N,XIAO Y H,LIU D P,et al.Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J].The plant cell,2014,114:132092.
    [39]ABE Y,MIEDA K,ANDO T,et al.The SMALL AND ROUNDSEED1(SRS1/DEP2)gene is involved in the regulation of seed size in rice[J].Genes&genetic systems,2010,85(5):327-339.
    [40]KITAGAWA K,KURINAMI S,OKI K,et al.A novel kinesin13 protein regulating rice seed length[J].Plant and cell physiology,2010,51(8):1315-1329.
    [41]SEGAMI S,KONO I,ANDO T,et al.Small and round seed 5gene encodes alpha-tubulin regulating seed cell elongation in rice[J].Rice,2012,5(1):1-10.
    [42]LIU S,HUA L,DONG S,et al.OsMAPK 6,a mitogen-activated protein kinase,influences rice grain size and biomass production[J].The plant journal,2015,84(4):672-681.
    [43]FAN C,XING Y,MAO H,et al.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J].Theoretical and applied genetics,2006,112(6):1164-1171.
    [44]MAO H,SUN S,YAO J,et al.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J].Proceedings of the national academy of sciences,2010,107(45):19579-19584.
    [45]QI P,LIN Y S,SONG X J,et al.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J].Cell research,2012,22(12):1666-1680.
    [46]ISHIMARU K,HIROTSU N,MADOKA Y,et al.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J].Nature genetics,2013,45(6):707-711.
    [47]HU Z J,LU S J,WANG M J,et al.A novel QTL q TGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J].Molecular plant,2018,11(5):736-749.
    [48]YING J Z,MA M,BAI C,et al.TGW3,a major QTL that negatively modulates grain length and weight in rice[J].Molecular plant,2018,11(5):750-753.
    [49]SONG X J,HUANG W,SHI M,et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nature genetics,2007,39(5):623-630.
    [50]WENG J,GU S,WAN X,et al.Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J].Cell research,2008,18(12):1199-1209.
    [51]SUN L,LI XJ,FU YC,et al.GS6,A member of the GRASgene family,negatively regulates grain size in rice[J].Journal of integrative plant biology,2013,55(10):938-949.
    [52]WANG E,WANG J,ZHU X,et al.Control of rice grain-filling and yield by a gene with a potential signature of domestication[J].Nature genetics,2008,40(11):1370-1374.
    [53]LI Y,FAN C,XING Y,et al.Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J].Nature genetics,2011,43(12):1266-1269.
    [54]WANG S,WU K,YUAN Q,et al.Control of grain size,shape and quality by OsSPL16 in rice[J].Nature genetics,2012,44(8):950-954.
    [55]WANG S,LI S,LIU Q,et al.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J].Nature genetics,2015,47(8):949.
    [56]ZHAO D S,LI Q F,ZHANG C Q,et al.GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J].Nature communications,2018,9(1):1240.
    [57]KAWAKATSU T,YAMAMOTO M P,TOUNO S M,et al.Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J].The plant journal,2009,59(6):908-920.
    [58]LI T,JIANG J,ZHANG S,et al.OsAGSW1,an ABC1-like kinase gene,is involved in the regulation of grain size and weight in rice[J].Journal of experimental botany,2015,66(19):5691-5701.
    [59]HUANG K,WANG D K,DUAN P G,et al.WIDE ANDTHICK GRAIN 1,which encodes an otubain-like protease with deubiquitination activity,influences grain size and shape in rice[J].The plant journal,2017,91(5):849-860.
    [60]吴俊,庄文,熊跃东,等.导入野生稻增产QTL育成优质高产杂交稻新组合Y两优7号[J].杂交水稻,2010(4):20-22.
    [61]杨益善,邓启云,陈立云,等.野生稻高产QTL导入晚稻恢复系的增产效果[J].分子植物育种,2006,4(1):59-64.
    [62]LI Y,TAO H,ZHAO X,et al.Molecular improvement of grain weight and yield in rice by using GW6 Gene[J].Rice science,2014,21(3):127-132.
    [63]LI M R,LI X X,ZHOU Z J,et al.Reassessment of the four yield-related genes Gn1a,DEP1,GS3,and IPA1 in rice using a CRISPR/Cas9 system[J].Frontiers in plant science,2016,7:377.
    [64]CHEN H,HE H,ZHOU F,et al.Development of genomics-based genotyping platforms and their applications in rice breeding[J].Current opinion in plant biology,2013,16(2):247-254.
    [65]ZHOU P,TAN Y,HE Y,et al.Simultaneous improvement for four quality traits of Zhenshan 97,an elite parent of hybrid rice,by molecular marker-assisted selection[J].Theoretical and applied genetics,2003,106(2):326-331.
    [66]HUANG X,HAN B.Natural variations and genome-wide association studies in crop plants[J].Annual review of plant biology,2014,65:531-551.