基于不同林分类型下土壤碳氮储量垂直分布
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vertical Distributions of Soil Carbon and Nitrogen Reserves in Different Forests
  • 作者:弓文艳 ; 陈丽华 ; 郑学良
  • 英文作者:GONG Wenyan;CHEN Lihua;ZHENG Xueliang;Soil and Water Conservation College,Beijing Forestry University;
  • 关键词:有机碳 ; 全氮 ; C/N ; 有机碳储量 ; 垂直分布
  • 英文关键词:organic carbon;;total nitrogen;;C/N;;organic carbon in soil profiles;;vertical distribution
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:北京林业大学水土保持学院;
  • 出版日期:2019-01-24
  • 出版单位:水土保持学报
  • 年:2019
  • 期:01
  • 基金:林业生态科技工程子课题项目“三北地区防护林体系结构定向调控技术研究与示范”(2015BAD07B03)
  • 语种:中文;
  • 页:154-159+166
  • 页数:7
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:S714.2
摘要
以辽东大伙房水库周边防护林典型林分针阔混交林(落叶松-油松-刺槐混交林)、油松林、落叶松林、刺槐林为研究对象,对其土壤养分含量进行测定,研究了不同林分土壤剖面上有机碳、全氮、有机碳储量的分布规律。结果表明:随着土层深度的增大,4种林分的土壤有机碳、全氮含量均逐渐降低;4种林分土壤剖面有机碳含量大小顺序为落叶松林(24.16g/kg)>刺槐林(23.07g/kg)>针阔混交林(16.06g/kg)>油松林(15.76g/kg);全氮含量大小顺序为刺槐林(5.23g/kg)>落叶松林(4.57g/kg)>油松林(3.45g/kg)>针阔混交林(2.42g/kg);C/N平均值大小顺序为落叶松林(7.36)>针阔混交林(6.51)>油松林(4.67)>刺槐林(4.57);4个林分0-40cm土层的有机碳储量大小为落叶松林(112.94t/hm~2)>刺槐林(107.40t/hm~2)>针阔混交林(105.42t/hm~2)>油松林(89.89t/hm~2);4种林分土壤pH无明显差别,各土层土壤pH随土层深度增加而增大;4种林分土壤容重由高到低顺序依次为针阔混交林(1.73g/cm~3)>油松(1.65g/cm~3)>落叶松(1.64g/cm~3)>刺槐(1.56g/cm~3)。4个林分土壤有机碳含量与土壤全氮含量互相间均存在极显著正相关关系,土壤有机碳、全氮含量与C/N之间则没有明显相关关系;在针阔混交林中,土壤容重、土壤全氮含量和土壤pH与土壤有机碳之间存在线性数量关系,而其他纯林则没有这种关系。
        The typical shelter forests around Dahuofang Reservoir in Liaodong were taken as research object in this study,including the coniferous and broad-leave mixed forest(larch-pine-locust mixed forest),larch,pine and locust.Soil nutrients were determined to study the distribution characteristics of organic carbon,total nitrogen and organic carbon in soil profiles under different forest stands.The results showed that with the increase of soil depth,the soil organic carbon and total nitrogen contents decreased gradually in the studied four forests.The order of soil profile organic carbon contents in the four forests was:larch forest(24.16g/kg)>locust forest(23.07g/kg)>coniferous and broad-leave mixed forest(16.06g/kg)>pine forest(15.76g/kg).The order of total nitrogen contents was:locust forest(5.23g/kg)>larch forest(4.57g/kg)>pine forest(3.45g/kg)>coniferous and broadkeave mixed forest(2.42g/kg);The order of average C/N was:Larch forest(7.36)>coniferous and boradleave mixed forest(6.51)>pine forest(4.67)>locust forest(4.57).The organic carbon storages of 0-40 cm soil layer in four forest stands:Larch forest(112.94t/hm~2)>locust forest(107.40t/hm~2)> coniferous and broad-leave mixed forest(105.42t/hm~2)> pine forest(89.89t/hm~2).There was no significant difference in soil pH between different forests.And the soil pH of each soil layer increased with the increasing soil depth.The soil bulk densities of the four forests was in descending order:Coniferous and broad-leave mixed forest(1.73g/cm~3)> pine forest(1.65g/cm~3)> larch forest(1.64g/cm~3)> locust forest(1.56g/cm~3).There was a significant positive correlation between soil organic carbon contents and soil total nitrogen contents in the four forest stands,while no significant correlations occurred between soil organic carbonand total nitrogen content and C/N.In the coniferous and broad-leave mixed forest stand,a significant linear relationship occurred between soil bulk density,soil total nitrogen content and soil pH with soil organic carbon,while no significances in other pure forest stands.
引文
[1]薛立,吴敏,徐燕,等.几个典型华南人工林土壤的养分状况和微生物特性研究[J].土壤学报,2005,42(6):1017-1023.
    [2] Sedjo R A.The carbon cycle and global forest ecosystem[J].Water,Air,and Soil Pollution,1993,70(1/4):295-307.
    [3] Corre M D,Schnabel R R,Shaffer J A.Evaluation of soil organic carbon under forests,cool-season grasses and warmseason grasses in the northeastern US[J].Soil Biology and Biochemistry,2000,31(11):1531-1539.
    [4]黄宇,冯宗伟,汪思龙,等.杉木、火力楠纯林及其混交林生态系统C、N储量[J].生态学报,2005,15(12):3146-3154.
    [5]杜红梅,王超,高红真.华北落叶松人工林碳汇功能的研究[J].中国生态农业学报,2009,17(4):756-759.
    [6] Vitousek P M,Howarth R W.Nitrogen limitation on land and in the sea:How can it occur?[J].Biogeochemistry,1991,13(2):87-115.
    [7]胡克林,余艳,张凤荣,等.北京郊区土壤有机碳含量的时空变异及其影响因素[J].中国农业学报,2006,39(4):764-771.
    [8] Bucur V.Ultrasonic techniques for nondestructive testing of standing trees[J].Ultrasonic,2005,43(4):237-239.
    [9]王棣,耿增超,佘雕,等.秦岭典型林分土壤有机碳储量及碳氮垂直分布[J].生态学报,2015,35(16):5421-5429.
    [10]马和平,郭其强,刘合满,等.西藏色季拉山东麓垂直带土壤碳氮分布特征及其影响因素[J].西北农林科技大学学报(自然科学版),2013,41(1):91-96.
    [11]黄从德,张健,杨万勒,等.四川森林土壤有机碳储量的空间分布特征[J].生态学报,2009,29(3):1217-1225.
    [12]王宁.山西森林生态系统碳密度分配格局及碳储量研究[D].北京:北京林业大学,2014.
    [13]陈建磊,谢文霞,崔高清,等.Smart Chem140全自动化学分析仪测定土壤全氮全磷的研究[J].分析科学学报,2006,32(1):84-88.
    [14]解迎革,李霞.土壤中砾石含量的测定方法研究进展[J].土壤,2012,44(1):17-22.
    [15]时忠杰,王彦辉,于澎涛,等.六盘山森林土壤中的砾石对渗透和蒸发的影响[J].生态学报,2008,28(12):6090-6098.
    [16]陈翠玲,蒋爱凤,介元芬,等.土壤微团聚体与土壤有机质及有效氮、磷、钾的关系研究[J].河南职业技术师范学院学报,2003,31(4):7-9.
    [17]耿增超,姜林,李珊珊,等.祁连山中段土壤有机碳和氮素的剖面分布[J].应用生态学报,2011,22(3):665-672.
    [18]党坤良,雷瑞德,耿增超,等.秦岭火地塘林区不同土壤类型化学性质的研究[J].西北林学院学报,1996,11(增刊1):26-30.
    [19]肖伟伟,范晓晖,杨林章,等.长期定位施肥对潮土有机质氮组分和有机碳的影响[J].土壤学报,2009,46(2):274-280.
    [20]李珊珊,耿增超,姜林,等.秦岭火地塘林区土壤剖面碳氮垂直分布规律的研究[J].西北林学院学报,2011,26(4):1-6.
    [21] Springob G,Kirchmann H.Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils[J].Soil Biology and Biochemistry,2003,35(4):629-632.
    [22]赵俊勇,孙向阳,李素艳,等.辽宁省老秃顶子不同林分类型土壤有机碳储量和碳氮垂直分布特征[J].东北林业大学学报,2016,44(10):65-78.
    [23]梁启鹏,余新晓,庞卓,等.不同林分土壤有机碳密度研究[J].生态环境学报,2010,19(4):889-893.
    [24]赵伟红,康峰峰,韩海荣,等.辽河源自然保护区不同林龄山杨天然次生林的土壤有机碳特征[J].西北农林科技大学学报(自然科学版),2015,43(10):57-63,76.