连云港附近海域海水、表层沉积物和水产品的重金属污染及生态风险评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation on Heavy Metals Pollution and Potential Ecological Risk in Seawater, Surface Sediment and Marine Organisms in Lianyungang Sea Areas
  • 作者:许星鸿 ; 姚海洋 ; 孟霄 ; 甘宏涛 ; 刘统昊 ; 方涛 ; 陈慧 ; 刘顺 ; 胡裕 ; 曾艳霞
  • 英文作者:XU Xinghong;YAO Haiyang;MENG Xiao;GAN Hongtao;LIU Tonghao;FANG Tao;CHEN Hui;LIU Shun;HU Yu;ZENG Yanxia;College of Marine Life and Fisheries, Jiangsu Ocean University;Marine Resources Development Institute of Jiangsu;
  • 关键词:连云港海域 ; 重金属 ; 海水 ; 表层沉积物 ; 水产品
  • 英文关键词:Lianyungang sea areas;;heavy metals;;sea water;;surface sediment;;aquatic products
  • 中文刊名:海洋湖沼通报
  • 英文刊名:Transactions of Oceanology and Limnology
  • 机构:江苏海洋大学海洋生命与水产学院;江苏省海洋资源开发研究院;
  • 出版日期:2019-10-15
  • 出版单位:海洋湖沼通报
  • 年:2019
  • 期:05
  • 基金:江苏省科技厅苏北科技专项(LYG-SZ201814);; 江苏省优势学科建设工程资助项目(CXKT20180102);; 江苏省海洋资源开发研究院开放基金项目(JSIMR201602);; 连云港市科技局现代农业项目(CN1411);; 连云港521高层次人才培养工程项目(KK18027);; 江苏省研究生和大学生科研与实践创新计划项目(KYCX18_2567)资助
  • 语种:中文;
  • 页:112-118
  • 页数:7
  • CN:37-1141/P
  • ISSN:1003-6482
  • 分类号:X55;X826
摘要
于2017年9月对连云港附近海域-赣榆、西墅、墟沟、连岛、高公岛等潮间带的海水、表层沉积物和水产品的重金属(Cd、Pb、Cr、Cu、Zn)含量进行了调查,并采用单因子污染指数法和潜在生态风险指数法对其污染程度及潜在生态风险进行评价。结果表明:连云港附近海域潮间带海水重金属处于很高的生态风险等级,综合生态风险指数RI依次为连岛>赣榆>西墅>墟沟>高公岛,所检测的5种重金属平均含量均劣于海水水质Ⅰ类标准,单项生态风险指数依次为Cd>Pb>Zn>Cu> Cr,其中Cd、Pb存在很高的潜在生态风险。采集的低潮区0~5cm的表层沉积物中5种重金属平均含量均未超出海洋沉积物Ⅰ类标准和黄海表层沉积物背景值,且RI均小于40,表明连云港近海沉积物重金属污染为低潜在生态风险。本研究采集的23种海洋生物中Cd和Pb的平均含量高于海洋生物质量Ⅰ类标准,但其单项生态风险指数均小于40,表明连云港附近海域水产品重金属污染总体为低潜在生态风险;从不同物种分析,大菱鲆和中国明对虾具有中等潜在生态风险,金鲳鱼、口虾蛄和杂色蛤具有较高的潜在生态风险,毛蚶具有很高的潜在生态风险。五个生物类群的RI依次为:海藻>甲壳类>双壳类>鱼类>头足类,都小于90,所以均处于低潜在生态风险。
        The heavy metals(Cd、Pb、Cr、Cu、Zn) in seawater, surface sediments and marine organisms were analyzed in tideland of Lianyungang sea areas in September 2017, including Ganyu, Xishu, Xugou, Lian island and Gaogong island, and the pollution condition and potential ecological risk were evaluated with the index number techniques of single factor and Hakanson ecological risk. The results showed that the potential ecological risk index(RI) of seawater in tideland of Lianyungang sea areas were at high level, and the order of the RI was Lian island> Ganyu> Xishu> Xugou> Gaogong island. The average content of five heavy metals tested in this experiment were all higher than the first class Seawater Quality Standard, and the order of the single ecological risk index were Cd>Pb>Zn>Cu> Cr, showing that Cd and Pb had high potential ecological risk. The average content of five heavy metals collected from the surface sediment of 0~5 cm of low tidal region were all lower than the first class Seawater Quality Standard and the background value of the surface sediment of the Yellow Sea with the RI below 40, which suggested that the surface sediment of Lianyungang sea areas had low ecological harm. Although the average content of Cd and Pb in 23 kinds of marine organisms were higher than the first class Marine Organism Quality Standard, their single ecological risk indexes were all lower than 40, which implied that the aquatic products of Lianyungang sea areas had low potential ecological risk. The analyzing result of individual species showed that the scophthalmus maximus and fenneropenaeus chinensis had medium potential ecological risk, the trachinotus ovatus, oratosquilla oratoria and venerupis variegata had higher potential ecological risk, while the potential ecological risk of scapharca subcrenata was at high level. The RI of five biological groups were all below 90, and the order was marine algae >crustacea >bivalve >fish> cephalopoda, so they all had low potential ecological risk.
引文
[1] 王长友,王修林,李克强,等.东海陆扰海域铜、铅、锌、镉重金属排海通量及海洋环境容量估算[J].海洋学报,2010,32(4):62-75.
    [2] Vijayavel K,Gopalakrishnan S,Thiagarjan R,et al.Immunotoxic effects of nickel in the mud crab Scylla serrata[J].Fish & Shellfish Immunology,2009(26):133-139.
    [3] 李玉,李宏观.连云港近海沉积物重金属历史分布特征及其来源[J].水生态学杂志,2016,37(6):59-67.
    [4] 杜吉净,毛龙江,谭志海,等.海州湾岩芯沉积物重金属污染评价和来源分析[J].海洋环境科学,2016,35(6):814-821.
    [5] 孟学平,申欣,王妍,等.连云港海域螺类软体部分重金属和微量元素分析[J].食品科学,2012,33(22):250-254.
    [6] 国家技术监督局.GB/T12763.3-2007,海洋调查规范第3部分:样品的采集、贮存和运输[S].北京:中国标准出版社,2007.
    [7] 奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,1995:4.
    [8] Hakanson L.An eclological risk index for aquatic pollution control.A sedimentological approach[J].Water Research,1980,14(8):975-1001.
    [9] 国家环境保护局,国家技术监督局.GB3097-1997,海水水质标准[S].北京:中国标准出版社,1997.
    [10] 国家环境保护局.GB11607-1989,渔业水质标准[S].北京:中国标准出版社,1989.
    [11] 徐颖.连云港附近海域水环境质量评价[J].海洋环境科学,2001,20(4):54-57.
    [12] 韩玲玲,刘吉堂,钱焕,等.海州湾水体重金属污染现状分析[J].淮海工学院学报(自然科学版),2009,18(3):90-92.
    [13] 国家质量监督检验检疫总局.GB18668-2002,中华人民共和国海洋沉积物质量[S].北京:中国标准出版社,2002.
    [14] 池清华,鄢明才.应用地球化学元素风度数据手册[M].北京:地质出版社,2007:96.
    [15] 国家质量监督检验检疫总局.GB18421-2001,海洋生物质量[S].北京:中国标准出版社,2001.
    [16] 李玉,冯志华,李谷祺.连云港近岸海域底栖动物中重金属含量及评价.[J].淮海工学院学报(自然科学版),2009,18(4):65-68.
    [17] 闻海波,李升福.连云港海域缢蛏中Cu、Pb、Cd的含量分析及评价[J].河北渔业,2015,(9):18-20.
    [18] 中国人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局.GB2762-2017,食品安全国家标准食品中污染物限量[S].北京:中国标准出版社,2017.
    [19] 中国人民共和国农业部.NY5073-2006,无公害食品水产品中有毒有害物质限量[S].北京:农业部,2006.
    [20] 张存勇,陈斌林.连云港近岸海域生物中重金属污染调查与评价[J].水生态学杂志,2009,2(6):135-137.
    [21] 袁旭音,乔磊,刘红樱,等.江苏海岸带生物体的重金属水平与生态评价[J].河海大学学报(自然科学版),2005,33(3):237-240.