不同氧化还原方法对1,2,3-三氯丙烷降解效果的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of the degradation effect of 1,2,3-trichloropropane by different oxidation-reduction methods
  • 作者:李卉 ; 韩占涛
  • 英文作者:LI Hui;HAN Zhantao;The Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences;Key Laboratory of Groundwater Pollution Mechanism and Remediation of Hebei Province and China Geological Survey;
  • 关键词:1 ; 2 ; 3-三氯丙烷 ; 氧化还原 ; 降解 ; 绿茶还原纳米铁 ; 纳米零价锌 ; 活化过硫酸盐
  • 英文关键词:1,2,3-trichloropropane;;oxidation-reduction;;degradation;;GT-NZVI;;NZVZ;;activated persulfate
  • 中文刊名:环境污染与防治
  • 英文刊名:Environmental Pollution & Control
  • 机构:中国地质科学院水文地质环境地质研究所;河北省中国地质调查局地下水污染机理与修复重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:环境污染与防治
  • 年:2019
  • 期:03
  • 基金:国家地质调查项目(No.12120113102700);; 中央公益性科研院所基本科研业务费资助项目(No.YYWF201629);; 河北省自然科学基金资助项目(No.D2017504004)
  • 语种:中文;
  • 页:21-25
  • 页数:5
  • CN:33-1084/X
  • ISSN:1001-3865
  • 分类号:X523
摘要
1,2,3-三氯丙烷(TCP)是一种新兴的人工合成有机污染物,其造成的地下水污染问题日益严重,有效的治理方法亟待探索。为明确不同氧化还原方法对TCP的降解效果,选用自制的绿茶还原纳米铁(GT-NZVI)、纳米零价锌(NZVZ)及活化过硫酸盐3种化学修复剂,分别开展对TCP的降解试验。结果表明:GT-NZVI颗粒具有较好的分散性,但对TCP的降解效果不明显;利用羧甲基纤维素(CMC)作为悬浮剂可实现NZVZ在水溶液中的稳定悬浮,且能有效降解TCP,36h后TCP基本降解完全,反应符合准一级动力学方程,反应速率常数为0.10h~(-1);利用柠檬酸(CA)作为螯合剂,Fe~(2+)活化过硫酸盐高级氧化技术可以有效降解TCP,当S_2O_8~(2-)、Fe~(2+)、CA摩尔比为20∶5∶1时,反应24h,TCP降解率为40.8%,反应符合准一级动力学方程,反应速率常数及半衰期分别为0.11d~(-1)和6.3d。
        1,2,3-trichloropropane(TCP)is a new emerging artificially synthesized organic pollutant.The groundwater pollution caused by TCP is becoming increasingly serious,and hence there is an urgent need to explore effective treatment measures.In order to investigate the effects of different redox methods on the degradation of TCP,three different chemical reagents,nanoscale zero-valent iron(NZVI)prepared by green tea(GT-NZVI),nanoscale zero-valent zinc(NZVZ)and activated persulfate(S_2O_8~(2-)),were selected to carry out a TCP degradation experiment.The results showed that the GT-NZVI particles had good dispersibility,but its degradation effect on TCP was not obvious.The stable suspension of NZVZ in aqueous solution could be achieved by using carboxymethyl cellulose(CMC)as a suspending agent,and it could effectively degrade TCP.After 36 hof reaction,TCP was almost completely degraded.The reduction reaction conformed to the pseudo first-order kinetic equation,and the reaction rate constant was 0.10 h~(-1).Using citric acid(CA)as the chelating agent,advanced oxidation technology of Fe~(2+)-activated persulfate could also effectively degrade TCP.When the molar ratio of S_2O_8~(2-),Fe~(2+) and CA was 20∶5∶1,the degradation rate of TCP was 40.8% after 24 h.The oxidation reaction also satisfied the pseudo first-order kinetic equation,and the reaction rate constant and half-life were 0.11 d~(-1) and 6.3 d,respectively.
引文
[1]钱翌,岳飞飞,褚衍洋.三氯乙烯环境污染修复技术研究进展[J].环境化学,2012,31(9):1335-1343.
    [2]陈翠柏,杨琦,沈照理.地下水三氯乙烯(TCE)生物修复的研究进展[J].华东地质学院学报,2003,26(1):10-14.
    [3]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[J].中国环境监测,1990,6(4):1-3.
    [4]徐伟箭,陈康庄.浅议环氧氯丙烷生产技术及其发展[J].氯碱工业,2006(9):29-33.
    [5]USEPA.Emerging contaminant:1,2,3-trchloropropane[R].Washington,D.C.:USEPA,2010.
    [6]SALTER B A J,SUCHOMEL E J,FORTUNA J H,et al.Evaluation of zerovalent zinc for treatment of 1,2,3-trichloropropane-contaminated groundwater:laboratory and field assessment[J].Groundwater Monitoring and Remediation,2012,32(4):42-52.
    [7]张华,蒋鹏,许石豪,等.有机污染场地环境初步调查与风险评估[J].安全与环境工程,2012,19(6):64-68.
    [8]钱永.1,2,3-三氯丙烷在地下水中的环境行为研究---以某氯代烃有机污染场地为例[D].北京:中国地质大学(北京),2016.
    [9]张婧怡,袁宏林,石宝友,等.活性炭对天然水体中甲基对硫磷和三氯乙烯的吸附特性研究[J].环境科学学报,2010,30(9):1778-1786.
    [10]徐雪斌,丁竹红,胡忻,等.花生壳基和木屑基生物炭对离子型染料和Pb(Ⅱ)的吸附性能研究[J].环境污染与防治,2017,39(9):929-935.
    [11]TEE A L,ATKNSON D A,WATTS R J,et al.Comparison of mineral and soluble iron Fenton’s catalyst for the treatment of trichloroethylene[J].Water Research,2001,35(4):977-984.
    [12]张璇,廖银念,苏玉红,等.铈铜复合氧化物催化降解甲苯的性能研究[J].环境污染与防治,2017,39(7):721-725.
    [13]陆泗进,王红旗,杜琳娜.污染地下水原位治理技术---透水性反应墙法[J].环境污染与防治,2006,28(6):452-457.
    [14]陈梦舫,骆永明,宋静,等.场地含水层氯代烃污染物自然衰减机制与纳米铁修复技术的研究进展[J].环境监测管理与技术,2011,23(3):85-89.
    [15]ARNOLD W A,ROBERTS A L.Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0)particles[J].Environmental Science&Technology,2000,34(9):1805-1974.
    [16]MAYMO G X,CHIEN Y,GOSSEET J M,et al.Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane[J].Science,1997,276(5318):1568-1571.
    [17]MOODY J D,FREEMAN J P,DOERGE D R,et al.Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp.strain PYR-1[J].Applied and Environmental Microbiology,2001,67(4):1476-1483.
    [18]蒲敏.污染场地地下水抽出处理技术研究[J].环境工程,2017,35(4):6-10.
    [19]陆光华,刘颖洁.地下水有机污染的生物修复技术及应用[J].水资源保护,2003(4):15-18.
    [20]高云泽,赵学斌,杨旭,等.土壤中挥发性有机污染物的修复技术[J].广州化工,2017,45(13):16-18.
    [21]PHENRAT T,SALEH N,SIRK K,et al.Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions[J].Environmental Science&Technology,2007,41(1):284-290.
    [22]SARATHY V,SALTER A J,NURMI J T,et al.Degradation of 1,2,3-trichloropropane(TCP):hydrolysis,elimination,and reduction by iron and zinc[J].Environmental Science&Technology,2010,44(2):787-793.
    [23]LIANG C J,LIANG C P,CHEN C C.pH dependence of persulfate activation by EDTA/Fe(Ⅲ)for degradation of trichloroethylene[J].Journal of Contaminant Hydrology,2009,106(3/4):173-182.