某工业城市大气颗粒物中PAHs的粒径分布及人体呼吸系统暴露评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Size Distribution Characteristics and Inhalation Exposure of Particle-Bound PAHs in an Industrial City
  • 作者:王娟 ; 郭观林 ; 秦宁 ; 侯荣 ; 杨敏 ; 康艺瑾 ; 段小丽
  • 英文作者:WANG Juan;GUO Guan-lin;QIN Ning;HOU Rong;YANG Min;KANG Yi-jin;DUAN Xiao-li;School of Energy and Environmental Engineering,University of Science and Technology Beijing;State Key Laboratory of Environmental Criteria and Risk Assessment,Department of Soil Pollution and Control,Chinese Research Academy of Environmental Sciences;
  • 关键词:钢铁工业城市 ; 多环芳烃(PAHs) ; 粒径分布 ; 组成特征 ; 呼吸系统 ; 沉积浓度 ; 暴露评估
  • 英文关键词:steel industrial city;;polycyclic aromatic hydrocarbons(PAHs);;particle size;;component distribution;;respiratory system;;deposition concentrations;;risk assessment
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:北京科技大学能源与环境学院;中国环境科学研究院土壤与固废环境研究所环境基准与风险评估国家重点实验室;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:国家重点研发计划项目(2016YFC1302501)
  • 语种:中文;
  • 页:45-54
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X513;X823
摘要
为研究大气颗粒物中多环芳烃(PAHs)的粒径分布与富集特征,确定不同粒径颗粒物中PAHs在人体呼吸系统各器官内的沉积浓度,以准确评估其人体呼吸暴露风险,选择东北某钢铁工业城市,在采暖期和非采暖期按粒径对大气颗粒物进行分级采样,用高效液相色谱对样品中14种优控PAHs进行分析,并将大气颗粒物粒径分级采样技术与人体呼吸系统内部沉积模型结合进行呼吸暴露评估.结果表明,大气颗粒物中总PAHs浓度变化显著,采暖期(743. 9 ng·m~(-3))高于非采暖期(169. 0ng·m~(-3)),多数PAHs(86. 3%~89. 9%)与大气中粒径≤2. 06μm的细颗粒有关;中低分子量PAHs单体呈双峰型,峰值位于1. 07~2. 06μm和7. 04~9. 99μm.高分子量PAHs呈单峰分布,峰值位于1. 07~2. 06μm; 4环PAHs的含量占主导优势,为总PAHs浓度的40%;在采暖期和非采暖期分别有53. 3%和55. 3%的颗粒态PAHs沉积在人体呼吸系统的不同器官,分别采用人体呼吸系统沉积浓度和在颗粒物上的总浓度计算该地区人群颗粒态PAHs的终身致癌超额风险值(incremental lifetime cancer risk,R值),成人的R值在采暖期为1. 3×10-5和2. 9×10-5,非采暖期为3. 1×10-6和6. 0×10-6,儿童的R值在采暖期为1. 0×10-5和2. 3×10-5,非采暖期为2. 4×10-6和4. 8×10-6.结果表明,颗粒物粒径分布直接影响呼吸系统沉积浓度和致癌风险,将分级采样技术与呼吸系统沉降模型结合方法可有效避免对人体呼吸暴露量的过度评估.
        Atmospheric particulate matter was collected during the heating period and the non-heating period of a typical steel industrial process in Northeast China to study the following: ① the size-depended distribution and enrichment characteristics of polycyclic aromatic hydrocarbons( PAHs); ② the deposition concentrations of PAHs of different particle sizes in various organs of the human respiratory system; and ③ the risk from human respiratory exposure. The 14 priority PAHs in the samples were determined by highperformance liquid chromatography( HPLC),and respiratory exposure assessment was conducted by combining the atmospheric particle size fractionation sampling technique with an internal deposition model. The results showed that the PAH concentrations during the heating periods( 743. 9 ng·m~(-3)) were higher than those during the non-heating periods( 169. 0 ng·m~(-3)). Most PAH contributions( 86. 3%-89. 9%) were related to fine particles with a diameter ≤ 2. 06 μm; medium and low molecular weight PAHs showed two concentration peaks in 1. 07-2. 06 μm and 7. 04-9. 99 μm range,respectively. In contrast,high molecular weight PAHs showed a unimodal peak in 1. 07-2. 06 μm range. Four-ring PAHs accounted for 40% of the total PAHs concentrations. With respect to human exposure,53. 3% and 55. 3% of the granular PAHs were deposited in the lungs during the heating and non-heating periods,respectively. The incremental lifetime cancer risk( R) of particulate PAHs in the population was calculated using the concentration in the human respiratory system and the total concentration associated with the particulate matter. The R values for adults ranged between1. 3 × 10-5 and 2. 9 × 10-5 during the heating period,and between 3. 1 × 10-6 and 6. 0 × 10-6 during the non-heating period. The R values for children during the heating period ranged between 1. 0 × 10-5 and 2. 3 × 10-5,and between 2. 4 × 10-6 and 4. 8 × 10-6 during the non-heating period. The results indicated that particle size greatly affected the concentrations of particles deposited in the respiratory system and the level of carcinogenic risk. The combination of the grading sampling technique and the respiratory system settlement model can effectively avoid the over-evaluation of human respiratory exposure.
引文
[1] Agudelo-Castaeda D M,Teixeira E C,Schneider I L,et al.Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1. 0of urban environments:carcinogenic and mutagenic respiratory health risk by age groups[J]. Environmental Pollution,2017,224:158-170.
    [2] Pinkerton K E,Green F H,Saiki C,et al. Distribution of particulate matter and tissue remodeling in the human lung[J].Environmental Health Perspectives,2000,108(11):1063-1069.
    [3] Valavanidis A,Fiotakis K,Vlachogianni T. Airborne particulate matter and human health:toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms[J]. Journal of Environmental Science and Health,Part C,2008,26(4):339-362.
    [4] Degrendele C,Okonski K,Melymuk L,et al. Size specific distribution of the atmospheric particulate PCDD/Fs,dl-PCBs and PAHs on a seasonal scale:implications for cancer risks from inhalation[J]. Atmospheric Environment,2014,98:410-416.
    [5] Luo P,Bao L J,Li S M,et al. Size-dependent distribution and inhalation cancer risk of particle-bound polycyclic aromatic hydrocarbons at a typical e-waste recycling and an urban site[J].Environmental Pollution,2015,200:10-15.
    [6] Ladji R,Yassaa N,Balducci C,et al. Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons(PAHs)in urban and industrial aerosol of Algiers, Algeria[J].Environmental Science and Pollution Research,2014,21(3):1819-1832.
    [7] Gope M,Masto R E,George J,et al. Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons(PAHs)in the street dust of Asansol city,India[J]. Sustainable Cities and Society,2018,38:616-626.
    [8] Jakovljevi'c I,Pehnec G,Va?i'c V,et al. Polycyclic aromatic hydrocarbons in PM10,PM2. 5and PM1particle fractions in an urban area[J]. Air Quality,Atmosphere&Health,2018,11(7):843-854.
    [9] Zhang K,Zhang B Z,Li S M,et al. Calculated respiratory exposure to indoor size-fractioned polycyclic aromatic hydrocarbons in an urban environment[J]. Science of the Total Environment,2012,431:245-251.
    [10] Luo P,Bao L J,Wu F C,et al. Health risk characterization for resident inhalation exposure to particle-bound halogenated flame retardants in a typical e-waste recycling zone[J]. Environmental Science&Technology,2014,48(15):8815-8822.
    [11] Kawanaka Y,Tsuchiya Y,Yun S J,et al. Size distributions of polycyclic aromatic hydrocarbons in the atmosphere and estimation of the contribution of ultrafine particles to their lung deposition[J]. Environmental Science&Technology,2009,43(17):6851-6856.
    [12] Kawanaka Y,Matsumoto E,Sakamoto K,et al. Estimation of the contribution of ultrafine particles to lung deposition of particle-bound mutagens in the atmosphere[J]. Science of the Total Environment,2011,409(6):1033-1038.
    [13] Allen J O,Dookeran N M,Smith K A,et al. Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts[J]. Environmental Science&Technology,1996,30(3):1023-1031.
    [14] Pratt G C,Herbrandson C,Krause M J,et al. Measurements of gas and particle polycyclic aromatic hydrocarbons(PAHs)in air at urban, rural and near-roadway sites[J]. Atmospheric Environment,2018,179:268-278.
    [15] Song H J,Zhang Y,Luo M,et al. Seasonal variation,sources and health risk assessment of polycyclic aromatic hydrocarbons in different particle fractions of PM2. 5in Beijing, China[J].Atmospheric Pollution Research,2019,10(1):105-114.
    [16]于瑞莲,郑权,刘贤荣,等.南昌市扬尘PM2. 5中多环芳烃的来源解析及健康风险评[J].环境科学,2019,40(4):1656-1663.Yu R L,Zheng Q,Liu X R,et al. Sources analysis and health risk assessment of polycyclic aromatic hydrocarbons in the PM2. 5fraction of fugitive dust in Nanchang City[J]. Environmental Science,2019,40(4):1656-1663.
    [17] Yang F X,Ding J J,Huang W,et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter[J]. Environmental Science&Technology,2014,48(1):63-70.
    [18] Hinds W C. Aerosol technology:properties, behavior, and measurement of airborne particles(2nd ed.)[M]. Los Angeles:Wiley,1999.
    [19] International Commission on Radiological Protection. Human respiratory tract model for radiological protection[R]. Oxford:Elsevier,1994.
    [20] Nisbet I C T,La Goy P K. Toxic equivalency factors(TEFs)for polycyclic aromatic hydrocarbons(PAHs)[J]. Regulatory Toxicology and Pharmacology,1992,16(3):290-300.
    [21] Bjorseth A, Ramdahl T. Handbook of polycyclic aromatic hydrocarbons[M]. New York:Marcel Dekker,1985. 85-127.
    [22]环境保护部.中国人群暴露参数手册(成人卷)[M].北京:中国环境科学出版社,2013. 3-26.Environmental Protection Department. Exposure factors handbook of Chinese population(adults)[M]. Beijing:China Environmental Publishing House,2013. 3-26.
    [23]金银龙,李永红,常君瑞,等.我国五城市大气多环芳烃污染水平及健康风险评价[J].环境与健康杂志,2011,28(9):758-761.Jin Y L,Li Y H,Chang J R,et al. Atmospheric PAHs levels and health risk assessment in five cities of China[J]. Journal of Environment and Health,2011,28(9):758-761.
    [24]周杨,张惠灵,汪茜,等.武汉市青山区冬季PM2. 5的污染特征及源解析[J].环境科学与技术,2015,38(11):159-164.Zhou Y,Zhang H L,Wang Q,et al. Pollution characteristics and source apportionment of PM2. 5from Qinshan district in Wuhan during the winter[J]. Environmental Science&Technology,2015,38(11):159-164.
    [25] GB 3095-2012,环境空气质量标准[S].
    [26]丁潇,白志鹏,韩斌,等.鞍山市大气PM10中多环芳烃(PAHs)的污染特征及其来源[J].环境科学研究,2011,24(2):162-171.Ding X,Bai Z P,Han B,et al. Pollution characteristics and source analysis of PAHs in PM10in Anshan city[J]. Research of Environmental Sciences,2011,24(2):162-171.
    [27] Abdel-Shafy H I,Mansour M S M. A review on polycyclic aromatic hydrocarbons:source,environmental impact,effect on human health and remediation[J]. Egyptian Journal of Petroleum,2016,25(1):107-123.
    [28] Gupta S,Kumar K,Srivastava A,et al. Size distribution and source apportionment of polycyclic aromatic hydrocarbons(PAHs)in aerosol particle samples from the atmospheric environment of Delhi, India[J]. Science of the Total Environment,2011,409(22):4674-4680.
    [29]王淑兰,柴发合,张远航,等.大气颗粒物中多环芳烃的污染特征及来源识别[J].环境科学研究,2005,18(2):19-22,33.Wang S L, Chai F H, Zhang Y H, et al. Pollution characterization and source identification and apportionment of polycyclic aromatic hydrocarbons(PAHs)in airborne particulates[J]. Research of Environmental Sciences,2005,18(2):19-22,33.
    [30] Zhou J B,Wang T G,Huang Y B,et al. Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing,China[J]. Chemosphere,2005,61(6):792-799.
    [31] Lee J Y,Shin H J,Bae S Y,et al. Seasonal variation of particle size distributions of PAHs at Seoul,Korea[J]. Air Quality,Atmosphere&Health,2008,1(1):57-68.
    [32] Tremblay R T,Riemer D D,Zika R G. Organic composition of PM2. 5and size-segregated aerosols and their sources during the2002 Bay Regional Atmospheric Chemistry Experiment(BRACE), Florida, USA[J]. Atmospheric Environment,2007,41(20):4323-4335.
    [33] Oliveira C,Martins N,Tavares J,et al. Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon,Portugal[J]. Chemosphere,2011,83(11):1588-1596.
    [34] Duan J C,Bi X H,Tan J H,et al. Seasonal variation on size distribution and concentration of PAHs in Guangzhou city,China[J]. Chemosphere,2007,67(3):614-622.
    [35] Miguel A H,Eiguren-Fernandez A,Jaques P A,et al. Seasonal variation of the particle size distribution of polycyclic aromatic hydrocarbons and of major aerosol species in Claremont,California[J]. Atmospheric Environment, 2004, 38(20):3241-3251.
    [36] Kavouras I G,Stephanou E G. Particle size distribution of organic primary and secondary aerosol constituents in urban,background marine, and forest atmosphere[J]. Journal of Geophysical Research,2002,107(D8):4069.
    [37] Venkataraman C, Friedlander S K. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 2.ambient measurements and effects of atmospheric processes[J].Environmental Science&Technology,1994,28(4):563-572.
    [38] Offenberg J H, Baker J E. Precipitation scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons along an urban to over-water transect[J]. Environmental Science&Technology,2002,36(17):3763-3771.
    [39] Wu S P,Tao S,Liu W X. Particle size distributions of polycyclic aromatic hydrocarbons in rural and urban atmosphere of Tianjin,China[J]. Chemosphere,2006,62(3):357-367.
    [40]周家斌,王铁冠,黄云碧,等.不同粒径大气颗粒物中多环芳烃的含量及分布特征[J].环境科学,2005,26(2):40-44.Zhou J B,Wang T G,Huang Y B,et al. Concentration and distribution characterization of polycyclic aromatic hydrocarbons in airborne particles with different sizes[J]. Environmental Science,2005,26(2):40-44.
    [41] Zhang K,Zhang B Z,Li S M,et al. Diurnal and seasonal variability in size-dependent atmospheric deposition fluxes of polycyclic aromatic hydrocarbons in an urban center[J].Atmospheric Environment,2012,57:41-48.
    [42]赵淑莉,戴天有,段小丽,等.北京城市空气中多环芳烃的污染特征[J].环境科学研究,2007,20(3):16-20.Zhao S L,Dai T Y,Duan X L,et al. Pollution characterization of polycyclic aromatic hydrocarbons in Beijing ambient air[J].Research of Environmental Sciences,2007,20(3):16-20.
    [43]毕新慧,盛国英,谭吉华,等.多环芳烃(PAHs)在大气中的相分布[J].环境科学学报,2004,24(1):101-106.Bi X H,Sheng G Y,Tan J H,et al. Phase partitioning of polycyclic aromatic hydrocarbons(PAHs)in the atmosphere[J].Acta Scientiae Circumstantiae,2004,24(1):101-106.
    [44]罗沛.大气颗粒态典型半挥发性有机污染物的粒径分布及人体呼吸暴露风险评估[D].广州:中国科学院广州地球化学研究所,2015.Luo P. Size-dependent distribution and inhalation exposure of particle-bound semivolatile organic contaminants[D].Guangzhou:Guangzhou Institute of Geochemistry,2015.