生物炭对土壤中铁生物还原作用和重金属分布的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of biochar on biological iron reduction and metal distribution in soils
  • 作者:张又弛 ; 李会丹
  • 英文作者:ZHANG Youchi;LI Huidan;Instituteof Urban Environment,Chinese Academy of Sciences;
  • 关键词:生物炭 ; 生物还原作用 ; 形态分布 ; 希瓦氏菌 ; 厌氧土壤
  • 英文关键词:biochar;;biological reduction;;speciation distribution;;Shewanella oneidensis;;anaerobic soils
  • 中文刊名:环境污染与防治
  • 英文刊名:Environmental Pollution & Control
  • 机构:中国科学院城市环境研究所;
  • 出版日期:2019-04-15
  • 出版单位:环境污染与防治
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金资助项目(No.41301328);; 福建省自然科学基金资助项目(No.2016J05107)
  • 语种:中文;
  • 页:4-8
  • 页数:5
  • CN:33-1084/X
  • ISSN:1001-3865
  • 分类号:X53
摘要
构建厌氧精瓶培养实验体系,探讨生物炭对土壤中铁的生物还原和其他重金属形态转化的影响。结果表明:生物炭会影响铁还原菌希瓦氏菌(Shewanella oneidensis MR-1)对土壤中铁矿物的还原溶出,降低亚铁离子浓度。培养70d后,土壤-希瓦氏菌(SR)处理组亚铁离子摩尔浓度为(291.0±58.0)μmol/L,土壤-希瓦氏菌-生物炭(SRB)处理组亚铁离子摩尔浓度降为(94.7±32.4)μmol/L。同时,生物炭改变了铁生物还原作用对土壤中重金属迁移性的影响。SRB处理组土壤中可交换态锌、钴和镍含量低于土壤-生物炭(CB)处理组,而铁锰氧化物结合态含量增加;与SR处理组相比,SRB处理组可交换态和铁锰氧化物结合态锌、钴、镍含量均有所增加。因此,在稻田等厌氧环境下应用生物炭修复重金属污染土壤时,生物炭对铁矿物生物还原、重金属形态转化的影响需要引起关注。
        The anaerobic incubation experiment was conducted to explore the influence of biochar on the biological iron reduction and metal distribution in soils.The results showed that the typical iron reducing bacteria Shewanella oneidensis MR-1(S.MR-1)could induced reduction and digestion of iron mineral in soil,while the existence of biochar could influence the bioreduction process and decrease the concentration of ferrous ion.After incubated for 70 days,the concentration of ferrous ion in the treatment with S.MR-1(SR)reached(291.0±58.0)μmol/L,while the concentration in the treatment with S.MR-1 and biochar together(SRB)was(94.7±32.4)μmol/L.Meanwhile,biochar could change the influence of biological iron reduction on mobility of heavy metal in soil.In the SRB treatment,the contents of exchangeable phases of Zn,Co and Ni were decreased compared to the treatment with single biochar(CB),while the contents of Fe-Mn oxides bonding phase of Zn,Co and Ni were increased.However,compared to the speciation in the SR treatment,the contents of exchangeable and Fe-Mn oxides bonding phases of Zn,Co and Ni were increased.Therefore,during the utilization of biochar for the remediation of soil heavy metal pollution in the anaerobic circumstance like paddy soils,the influence of biochar on the bioreduction of Fe bearing mineral and the redistribution of heavy metals should be concerned.
引文
[1]王红,夏雯,卢平,等.生物炭对土壤中重金属铅和锌的吸附特性[J].环境科学,2017,38(9).
    [2]HOUBEN D,EVRARD L,SONNET P.Mobility,bioavailability and pH-dependent leaching of cadmium,zinc and lead in a contaminated soil amended with biochar[J].Chemosphere,2013,92(11):1450-1457.
    [3]PUGA A P,ABREU C A,MELO L C A,et al.Cadmium,lead,and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar[J].Environmental Science and Pollution Research,2015,22(22):17606-17614.
    [4]AYYASAMY P M,CHUN S,LEE S.Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp.(HN-41)amended with various carbon sources and synthetic soil organic matters[J].Journal of Hazardous Materials,2009,161(2):1095-1102.
    [5]HU C H,ZHANG Y C,ZHANG L,et al.Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(Ⅲ)minerals and Fe-rich soils[J].Journal of Microbiology and Biotechnology,2014,24(4).
    [6]张又弛,李会丹.生物炭对土壤中微生物群落结构及其生物地球化学功能的影响[J].生态环境学报,2015,24(5):898-905.
    [7]CHEN Z,WANG Y,XIA D,et al.Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition[J].Journal of Hazardous Materials,2016,311:20-29.
    [8]GHORBANZADEH N,KUMAR R,LEE S,et al.Impact of Shewanella oneidensis on heavy metals remobilization under reductive conditions in soil of Guilan Province,Iran[J].Geosciences Journal,2018,22(3):423-432.
    [9]ZHANG Y C,TANG X D,LUO W S.Metal removal with two biochars made from municipal organic waste:adsorptive characterization and surface complexation modeling[J].Toxicological&Environmental Chemistry,2014,96(10):1463-1475.
    [10]ZHANG Y C,LI H D.Biological reduction of hydrogel-encapsulated Fe(Ⅲ)by Shewanella oneidensis MR-1:incubation experiment and kinetic modeling[J].Polish Journal of Environmental Studies,2016,25(2):873-880.
    [11]CUTTING R S,COKER V S,FELLOWES J W,et al.Mineralogical and morphological constraints on the reduction of Fe(Ⅲ)minerals by Geobacter sulfurreducens[J].Geochimica et Cosmochimica Acta,2009,73(14):4004-4022.
    [12]李会丹,胡朝华,张又弛,等.模拟土壤团聚体中金属离子的吸附-还原解吸[J].环境科学与技术,2015,38(3).
    [13]徐楠楠,林大松,徐应明,等.玉米秸秆生物炭对Cd2+的吸附特性及影响因素[J].农业环境科学学报,2014,33(5):958-964.
    [14]高瑞丽,朱俊,汤帆,等.水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J].环境科学学报,2016,36(1):251-256.
    [15]ZACHARA J M,KUKKADAPU R K,FREDICKSON J K,et al.Biomineralization of poorly crystalline Fe(Ⅲ)oxides by dissimilatory metal reducing bacteria(DMRB)[J].Geomicrobiology Journal,2002,19(2).
    [16]RODEN E E,ZACHARA J M.Microbial reduction of crystalline iron(Ⅲ)oxides:influence of oxide surface area and potential for cell growth[J].Environmental Science&Technology,1996,30(5):1618-1628.
    [17]刘晶晶,杨兴,陆扣萍,等.生物质炭对土壤重金属形态转化及其有效性的影响[J].环境科学学报,2015,35(11):3679-3687.
    [18]SERGENT A S,JORAND F,HANNA K,et al.Effects of Sibearing minerals on the nature of secondary iron mineral products from lepidocrocite bioreduction[J].Chemical Geology,2011,289(1):86-97.