大坝基岩水泥灌浆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管新技术、新材料不断发展,可是在基础处理及大坝防渗、补强等工程中,水泥灌浆仍然在技术上、经济上保持着最为重要的地位。尤其是98年特大洪水过后,我国一大批中、小型水库的大坝需要除险加固,在堤坝建筑物防渗补强方面,水泥灌浆技术被更广泛地应用。为保证大坝安全,提高灌浆效果,本文结合英那河水库扩建工程原浆砌石坝体补强灌浆时对防渗墙进行的现场原型监测试验,从水泥浆材的灌入能力、裂缝灌浆扩散半径、以及灌浆压力与地表抬动值的关系来研究灌浆的质量效果及其对建筑物的影响。主要工作如下:
     1.水泥浆材的灌入能力分析。影响水泥浆材灌入能力的主要因素是:水泥的颗粒尺寸和在浆体中的凝聚状态,以及宏观上表现出来的浆体析水和沉降稳定性、浆体的流变特性等。在窄小裂隙中,提高水泥浆体灌入能力的有效措施是磨细水泥颗粒和提高浆体的分散性以及增大灌浆压力。单纯加大浆液水灰比来提高灌入能力,不会起到多大作用。
     2.裂缝灌浆扩散半径的研究。灌浆扩散半径是进行灌浆结构设计和灌浆工艺流程控制的基本依据。通过研究水泥浆液在裂隙中的流动规律,分析了灌浆压力、浆液的流变参数和灌浆时间对扩散半径的影响。
     3.灌浆压力与地表抬动值的关系。灌浆的注浆量、地表抬动值等灌浆效果参数与灌浆压力、灌浆浆材、灌浆深度等因素有关。在许多情况下,灌浆时使地层产生一些受到控制的抬动变形是无害的;绝对不允许产生任何变形的灌浆,通常是灌不好的。所以只要其不会造成不良后果,一般都可允许产生一定的变形。
     4.混凝土防渗墙原型监测结果及其分析。由于英那河水库原浆砌石坝体是靠上游的混凝土防渗墙防渗,加之防渗墙有的部分较薄,只有0.5米厚,坝体补强灌浆时,对其进行了现场实时跟踪监测,并对监测结果进行了分析。
In despite of the continually development of new technology and new material, cement grouting keeps the most important status on the technology and economy in the project of foundation processing, dam seepage control and dam reinforcement. Especially after the "98 super flood", numbers of dams needs to be repaired and reinforced, which of medium and small reservoir in our country. The cement grouting is widely used in dam anti-seepage and reinforced. To ensure the dam safety and grouting effect, according to the field archetype inspect test of the impervious wall as well as reinforced grouting to the cement stone masonry dam of the Yingnahe Reservoir Extension Project, we studied the grouting quality and effect and its infection to the construction from the perspective of the cement perfusion ability, the crack grouting diffusion radius and the relationship of grouting pressure and ground displacement.
    The main parts of my work are as follows:
    1. Perfusion ability analysis of the cement grout. The main factors influence the cement grout perfusion ability are as follows: Grain size of the cement grout, grain cohesion state of the cement grout, stability of cement grout bleeding and sedimentation, Theological behavior of the cement grout etc. In the narrow crack, to enhance the cement grouting ability, the efficiency measures are as follows: to reduce the grain size, to enhance the dispersancy of cement grout, to increase the grouting pressure. It is no use to increase the water-cement ratio.
    2. Study of the crack grouting diffusion radius. The crack grouting diffusion radius is the basic gist of the grouting construction design and grouting craftwork control. With the study of the cement flow rule in the crack, we analyzed the influence to diffusion radius by the grouting pressure, cement rheological parameter and grouting time.
    3. The relationship of grouting pressure and ground displacement. The grouting effect parameter of grouting quantity and the ground displacement has relationship with grouting pressure, grouting material and grouting depth etc. In many conditions, the controlled ground displacement is harmless as well as grouting. It is voidable of the absolute no displacement grouting. If it doesn't bring breakage, definite displacement is allowable.
    4. Concrete impervious wall archetype inspect result and its analyze. The cement stone masonry dam of the Yingnahe Reservoir anti-seepage depends on the front concrete impervious wall. Otherwise, the impervious wall is only 0,5m in some parts, as well as grouting, we do the real-time inspect and analyzed the result.
引文
[1] 王铁生译。大坝的安全.水利水电快报,1984(5)。
    [2] 孙申登译。混凝土坝岩基的安全性.水利水电快报,1984(6)。
    [3] 张景秀著。坝基防渗与灌浆技术(第二版)。中国水利水电出版社,2002。
    [4] C. F. Grundy, The Treatment by Grouting of Permeable Foundation of Dams, Fifth International Congress on Large-dams, Problems 16, The No. 66Report, 1955.
    [5] A. Warren Simonde and Fred H. Lippold, Treatment of Foundation for Large Dams by Grouting Method, Transection of ASCE. Vol 16, 1951.
    [6] A. Mayer, Modern Grouting Technique, Grouts and Drilling Muds in Engineering Practice, London Butterworths, 1965.
    [7] William H. Bussly, Some Rock Grouting Experiences, Grouts and Drilling Mud in Engineering PracticeLondon Butter-Worth, 1963.
    [8] 雷华芳译。灌浆方法的发明与发展。水利水电科学研究院编地基灌浆译丛,1964(4)。
    [9] 李茂芳,孙钊著。大坝基础灌浆。水利水电出版社,1987。
    [10] 蒋彭年译。混凝土地基及其岸边渗流控制。水利电力部第四工程局勘测设计研究院编技术情报资料。
    [11] P.隆德。坝基和岸坡的处理。人民黄河,1979(1)。
    [12] S.Zebovitz,R.J.Krízek,张克健译.超细水泥浆灌注细砂试验研究。现代灌浆技术译文集。水利水电出版社,1991。P35~p47。
    [13] 陈义斌,陈珙新。湿磨水泥灌浆新技术。水利水电地基与基础工程学术交流会论文集,1998。
    [14] Kikchi K, Mito Y, Adachi T. Case study on the mechanical improvement of rock masses by grouting, In Yoshinaka R, Kikuchik, editors, proceedings of the inernational workshop on Rock Foundation. 1995. P393~P397.
    [15] In situ experimental studies on improvement of Rock Masses By Grouting Treatment. K. KIKUCHI. Int. J. Rock Mech. Min. Sci. Vol. 34. 1997.
    [16] 杨晓东,刘嘉材。水泥浆材灌入能力研究。水利水电科学研究院科学研究论文集第27集(结构材料、岩土与抗震工程),1985。P184~p192。
    [17] Gustafson G. Still. H. Predicting of groutability from grout properties and hydrological data. Tunnelling under Space Tech 1996.
    [18] G.Lombadi,李德富译。内聚力在岩石水泥灌浆中的作用。现代灌浆技术译文集。水利水电出版社,1991。P59~p75。
    [19] Lombardi G, The role of cohension in cement grouting of rock. In commission Int des Grands Barrages, Lousanne, 1985, Q. 58r. 13.
    [20] Schmertmann J. H, Henry JF, A design theory for compaction grouting. IN: Bodern RH, Holtz RD, Juran I, editors, Proceedings of gouting soil improvement and geosynthetics. New
    
    York:ASCE. 1992. P215~218.
    [21] 张作媚译。压入灌浆渗入性的理论基础。水利水电科学研究院编地基灌浆译丛,1964(4)。
    [22] 刘嘉材。裂隙灌浆扩散半径研究,水利水电科学研究院科学研究论文集第27集(岩土工程),1982。P186~p195。
    [23] Numerical studies of Ground Water Flow, Grouting and Solute Transport in Jointed Rock Mass. H. K. MOON. Int. J. Rock Mech. Min. Sci. Vol. 34. 1997.
    [24] 马国彦,林秀山著。水利水电工程灌浆与地下水排水。中国水利水电出版社,2001。
    [25] 李小青,高金仲。试论灌浆压力对灌浆效果的影响.地质科技情报第18卷增刊,1999.6。
    [26] 於习军,徐年丰。三峡工程基础帷幕灌浆压力的论证确定与应用分析。水利水电快报(第23卷第14期),2002.7。
    [27] 胡尚清等。灌浆压力对灌浆效果的影响因素分析。黑龙江水专学报(第27卷第2期),2000.6。
    [28] Widmann R. ISRM. Commission on rock grouting Int J Rock Hech Min Sci 1996.
    [29] Lee. JS, Bang CS. ChoiIY, Analysis of borehole instability duce to grouting pressure, IN: Amadei B. etal, editors, Proceedings of the 37th us Rock Mechanics Symposium 1999.
    [30] Franklin JA, Dussealt MB. Rock engineering. New York:MC Graw-Hill, 1989.
    [31] 成都地质学院工程地质考古室译。地质学原理。中国建筑工业出版社,1982。
    [32] F. K. Ewert. Permeability, groutability and grouting of rocks related to dam site. Dam Engineering, 1997.
    [33] 杨晓东。岩基灌浆中地表抬动分析。中国水利水电科学研究院论文集,1986。
    [34] 朱彤,窦向贤,刘艳杰。英那河水库坝体补强灌浆对混凝土防渗墙应力应变影响的现场实时跟踪监测及研究。水利水电技术,2004.3。
    [35] 朱伯芳。大体积混凝土温度应力与温度控制。中国电力出版社,1999。
    [36] 朱伯芳.朱伯芳院士文选。中国电力出版社,1997。
    [37] 潘家锋。水工建筑物的温度控制。水力电力出版社,1990。
    [38] 水工设计手册(第五卷)。水利电力出版社,1987。
    [39] 赵志仁著。大坝安全监测的原理与应用。天津科学技术出版社,1992。
    [40] 丁宝瑛。国内典型混凝土坝裂缝情况调查与分析。中国水电科研院,1988.7。
    [41] 徐芝纶。弹性力学简明教程(第二版)。高等教育出版社,1983。
    [42] 王龙甫编。《弹性力学》。科学出版社,1984。
    [43] Nicholson DP, Gammage C, Chapman T, The case of finite element methods to model compensation grouting IN Bell Al, editor Proceedings of grouting in the ground. 1992. P297~312.
    [44] J. Noorishad. A finite element method for coupled stress and fluide flow analysis in fractured rock mass [J] .Int. J. Rock Mech. Min. Sci.&Geomech. Abstr, 19:185~193.
    [45] 柴军瑞。作用在裂隙中的渗透力分析。工程地质学报,2001,9(1)。P29~P31。