摘要
受化学物质氧化-还原反应发出强闪光的启发,以烟火药燃烧发光机理研究为基础,进行了烟火药特征辐射光谱与激光介质吸收光谱匹配的尝试和新配方烟火泵浦源药剂的研究,继而设计制备了烟火泵浦激光器实验装置并对其结构和出光性能作出改进,并与气体放电灯和阳光泵浦源比较,探讨了这种激光器的应用前景。
出于研制新型高效烟火光源的需要,对各种类型氧化剂和可燃剂进行总体和针对性实验,发现了氧化剂、可燃剂与辐射强度、发射光谱之间定性的对应关系。用CEA(Chemical Equilibrium with Applications)计算了烟火药燃烧平衡态热力学参数和产物组成,并与实验结果对照,进而对烟火药的发光机理作出分析,认为烟火药的连续谱和分立谱都是热激发的结果,受黑体辐射定律支配,连续谱体现为燃烧体系的平衡温度,分立谱强度由偏离平衡的局部瞬态高温决定,特征波长分布由气体发射率本征分布决定。这个结论对认识烟火药发射光谱的本质和指导药剂研究具有重要意义。
由于烟火药的发射光谱轮廓对激光器的光泵浦效率影响较大,本文分析了烟火药发射光谱轮廓的成因和影响因素,并对照激光介质吸收光谱随激活离子和基质结构变化的规律,在综合考虑了物理、化学、光学性能和技术现状后,选择了磷酸盐Nd玻璃为本文实验的激光介质。针对该介质研制了一组发射混合光谱的烟火泵浦源药剂,与以前报道的完全不同,其中A#配方能够稳定出光,其主要化学组成为:RbNO_3、Ba(NO_3)_2、KClO 4、NaNO_3和Al/Mg。
在药剂研究的基础上,设计制备了烟火泵浦激光器实验装置。通过引入雾化Mg粉部分取代Al/Mg合金成功提高了燃烧速度、峰值辐射强度以及能量转化效率。考虑到光束的空间传播特性和燃烧产物中凝聚态成份对光路的影响,研究了激光能量随质量和分布的变化规律,发现大量药柱集中在少量电阻丝上的排布方式能量利用率高,药柱间距小于药柱到介质保护管表面距离时,泵浦比较均匀。出光实验得到结果为:用2.52g药剂反应获得1.053μm激光1.012 J,脉宽约40ms。
将烟火泵浦源与其它光泵浦源比较,认为其总辐射强度低于Xe灯,但光谱效率可能超过Ke灯和碱金属灯,总的来说其泵浦效果应该能与气体放电灯相当;烟火泵浦源和阳光光源一样,在电能不便利的场合十分有用,前者在使用上更加灵活、方便。
在对烟火药发光特征和激光器结构研究的基础上,提出提高现有烟火光源的燃烧速度和点火同步性以获得高峰值辐射强度,并且降低自吸效应以提高光谱效率及能量利用率的泵浦源改进方法,以改进后的泵浦源激励掺Nd~(3+)氟化物激光陶瓷的烟火泵浦激光器方案将大大提高现有烟火泵浦激光器的能量和峰值功率。
Redox reaction of chemical materials gives out intense light. Enlightened by this fact, study of matching between pyrotechnic reaction emission spectrum and laser medium absorption spectrum was made and a new prescription of pyrotechnical was prepared based on the study of pyrotechnic reaction radiation mechanism. Pyrotechnically pumped laser was fabricated, and its structure and optical ability were improved. Future application of the laser was studied by comparison with gas discharge lamp and solar pump source.
To satisfy the demands of developing effective new pyrotechnic light source, genaral and special experiments on all kinds of oxidant and fuel were made. Relationship beween oxidant, fuel and radiantion intensity, emission spectrum was given out. Burning equilibrium state thermodynamic parameter and producion ingredient of pyrotechnical were calculated by CEA (chemical Equilibrium with Applications) program, and compared with the experiment results. Analysis of radiation mechanism considers that either continuous spectum or line spectra was the result of thermal excitation. They all obey the rule of black-body radiation. Continuouse spectrum was scaled by equilibrium temperature, intensity of line spectra decided by the transient state high temperature of deviated gas. Spectral distribution of line spectra was decided by emissivity of gas. The conclusion is important for apprehension of pyrotechnic reaction emission spectrum and study of pyrotechnic preparation.
Formation and influencing factor of pyrotechnic emission outline was analysed because of its significance to the optical pump efficiency of laser. The absorption spectrum of laser medium affected by the actication center and ground substance, so phosphate Nd glass was selected for experiment in the paper after comprehensive consideration of physical, chemical, optical property and technical actuality. A set of prescription which give out mixed spectrum were prepared for the laser medium, they are different completely with the prescription used before. Among them, A# prescription gave out laser steadily. The chemical composition of A# is: RbNO_3, Ba(NO_3)_2, KClO_4, NaNO_3 and Al/Mg.
Experiment equipment of pyrotechnically pumped laser was designed and fabricated based on the prescription study. Burning speed, peak radiation intensity and optical efficiency were improved by replacing half of Al/Mg with pulverized Mg powder. In view of the space transmit character of light and obstruction of condensed phase in production, law on laser energy varied with pyrotechnical distribution and weight was studied. It was found even pump is achieved by distribution manner that poles concentrated to few wires and the interval between poles is smaller than the spacing between poles and quartz tube. The best result was: 1.012J laser at 1.053μm which lasting 40ms was achieved by 2.52g pyrotechnical powder.
Comparisons with other optical pump source suggest that, the genaral radiation of pyrotechnical pump source is lower than Xe lamp, but the efficiency shouled exceed Ke lamp and alkali metal lamp. In genaral, the pump source corresponds to gas discharge lamp. Pyrotechnical pump source as well as solar pump source is very useful when electric energy dosen’t available; former is more expedient and convenient.
Based on the study of pyrotechnic optical property and laser structure, method to ameliorate the pyrotechnical pump source wase put forward: improving the burning rate and ignition synchronism to acquire higher peak radiation intensity, and depressing the self-absorption effect to raise the spectrum efficiency and energy conversion efficiency. The fluoride Nd laser ceramic excited with the improved pump source will be a promise scheme to increase the laser energy and peak power greatly.
引文
[1]潘功配,高等烟火学,哈尔滨:哈尔滨工程大学出版社, 2005, 28.
[2] C. L. Smith, and P. J. Kisatsky, An investigation into the feasibility of a pyrotechnic laser pump, AD 420238,1963.
[3] A. A. Kaminskii,激光晶体,北京:科学出版社, 1981, 89~159.
[4]刘晓慧,关翔云,孙长征,浅谈火工品药剂的粘合作用,火工品2003, (4):42~44.
[5] E.Shafirovich, S. K. Teoh, and A. Varma, Combustion of levitated titanium particles in air, Combustion and Flame 2008, (152):262~271.
[6] K.Engelen, M. H.Lefebvre, and A. Hubin, Properties of a Gas-Generating Composition Related to the Particle Size of the Oxidizer, Propellants, Explosives, Pyrotechnics 2002, 27:290~299.
[7] J.S.Lee,and C.K. Hsu,The DSC studies on the phase trasition, decomposition and melting of potassium perchlorate with additives, Thermochinica Acta 2001, 367:367~370.
[8] S.G.Hosseini, S.M. Pourmortazavi, and S. S. Hajimirsadeghi, Thermal decomposition of pyrotechnic mixtures containing sucrose with either potassium chlorate or potassium perchlorate, Combustion and Flames 2005, 141:322~326.
[9]范小花,蔡治勇,易俊等,烟花爆竹用氧化剂的研究进展,中国安全科学学报2008, 18 (6):80~83.
[10]黄玉国,周新龙.一种安全鞭炮.中国, 200510032421.3, 2006.
[11]陈义文.鞭炮氧化剂.中国, 03118270.4, 2003.
[12] M. Fathollahi, S. M. Pourmortazavi, and S. G. Hosseini, The effect of the particle size of potassium chlorate in pyrotechnic compositions, Combustion and Flames 2004, 138:304~306.
[13] Y.F.Ivanonv, M.N.Osmonoliev, V.S.Sedoi, et al., Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions, Propellants, Explosives, Pyrotechnics 2003, 28 (6):319~333.
[14] J. J. Granier, and M. L. Pantoya, Modeling Laser ignition and heat propagation in nanocomposite thermites, 8th AIAA/ASME Joint thermophysics and heat transfer conference, (St.Louis,Missouri, 2002).
[15] M. M. Mench, and C. L. Yeh, Proprllant burning rate enhencement thermal behaviour of ultrafine aluminum powders, International Annual Conference of ICT 29th(energetic materials), 1998, 30.15~30.31.
[16] M. M. Mench, comparison of the thermal behavior of regular and ultra-fine alumiunm, Combustion Science and Technology 1998, 135:269~292.
[17]胡润芝,纳米材料在固体推进剂中的应用研究,固体火箭推进剂学术会议论文集, 2003.
[18] R. Tomasi, and Z. A. Munir, Effect of particle size on the reaction wave propagation in the combustion synthesis of Al2O3-ZrO2-Nb composites, Journal of American Ceramic Society 1999, 82 (8):1985~1992.
[19]程智海,蔡小舒,岳俊等,燃烧状态及煤粉粒径对火焰光谱的影响,工程热物理学报2006, 27 (增刊2):147~150.
[20] L. d. Yong, and F. Lui, Radiative Ignition of Pyrotechnics: Effect of Wavelength on Ignition Threshold, Propellants, Explosives, Pyrotechnics 1998, 23:328~332.
[21]陈守文,成一,张赞峰等,涂覆式桥丝电点火头的研究,火工品2002, (3):15~17.
[22]谭伟,高本庆,刘波,桥丝式电火工品静电发火过程的数值模拟,火工品2003, (3):1~5.
[23] J. J.Granier, and M. L.Pantoya, Modeling Laser Ignition and Heat Propagation in Nanocomposite Thermits, AIAA/ASME Joint Thermophysics and Heat Transfer Conference, (St. Louis,Missouri, 2002).
[24]胡艳,沈瑞琪,叶迎华,激光点火技术的发展,含能材料2000, 8 (3):141~144.
[25]沈瑞琪,叶迎华,胡艳等,不同氧\燃比的硼-硝酸钾的激光点火特性,中国激光2009, 36 (2):338~341.
[26] V. Weiser, and N. Eisenreich, Fast Emission Spectroscopy for a Better Understanding of Pyrotechnic Combustion Behavior, Propellants, Explosives, Pyrotechncis 2005, 30 (1):67~78.
[27]李修乾,洪延姬,高能固体激光器现状及发展趋势,装备指挥技术学院学报2004, 15 (1):101~105.
[28] A. A. Kaminskii, S. N. Bagayev, K. Ueda, et al., 5.5J pyrotechnically pumped Nd:YAG ceramic laser, Laser Phys. Lett. 2006, 3 (3):124~128.
[29] T. Yabe, T. Ohkubo, S. Uchida, et al., High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium, Appl. Phys. Lett. 2007, 90 (26)
[30] M. Lando, J. Kagan, B. Linyekin, et al., A solar-pumped Nd:YAG laser in the high collection efficiency regime, Optics Communications 2003, 222:371~381.
[31] O. B. Danilov, I. M. Belousova, A. A. Mak, et al., Possibility of realizing fullerene-oxygen-iodine laser with solar pumping (Sun-Light FOIL), Proc. SPIE2001.
[32] C. J. reed, Nashua, T. M. Pollak, et al. Pyrotchnic lamp. USA, 4536879, 1983.
[33] C. L. Smith, E. Homentowski, and C. Stokes, Direct Nondestructive pumping of Ruby Lasers by Chemical Means, Applied Optics 1967, 6 (6):1130~1131.
[34]朱长星,叶迎华,沈瑞琪, Zr、Mg系烟火剂发光光谱特性研究,含能材料2005, 13 (2):118~121.
[35]杨硕,杨利,许又文,几种烟火药火焰光谱的研究,北京理工大学学报1998, 18 (5):651~655.
[36]唐桂林,杜志明,赵家玉等,环保型绿色火焰剂的研究,含能材料2004, 12 (6):368~370.
[37]韩颂青,刘吉平,贵大勇,高温燃烧体系的光辐射,火工品1998, (3):37~40.
[38] L.F.Johnson, G.D.Boyd, and K.Nassau, Continous operation of a solid-state optical maser, Physics Review 1962, 126 (4):1406~1409.
[39] A. A. Kaminskii, and A. I. Bodretsova, New quasi-CW pyrotechnically pumped crystal lasers, Soviet Journal of Quantum Electronics 1983, 13 (7):975~976.
[40] M. Acharekar, and R. LeBeau, Miniature laser direct-detection radar, SPIE 1633,94~111,1992.
[41] A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, Pyrotechnically excited quasi-cw laser, Soviet physics Technical physics 1969, 14 (3):396~402.
[42] J. F. Waymouth, and J. W. Shaffer, Investigation of the feasibility of pumping high energy neodymium glass lasers by chemical flashlamps, DE 85-012962,1984.
[43] E. T. Makhrov, N. I. Cherepov, and I. I. Yazev, An expendable flashlamp as an optical pumping source for lasers, Soviet Journal of Quantum Electronics 1976, 6 (10):1256~1257.
[44] Brecher. Flash Lamp. USA, 3765821, 1973.
[45] W. F. Wing, R. J. Grasso, and J. R. Mosto, Pyrotechnically pumped laser, CLEO '81: IEEE/OSA Conference on Lasers and electro-Optics, (Washington D.C., USA, 1981).
[46] H. Walter. Laser gun and cartridge. USA, 5617444, 1997.
[47] Chicklis. Low cost laser. USA, 4371969, 1983.
[48] A. I. Bodretsova, A. A. Kaminskii, and S. I. Levikov, Quasi- continuous CaF2-Dy2+ laser with pyrotechnic excitation, Alademiia Nauk SSSR Doklady 1967, 174 (2):337~338.Russian
[49] A. I. Bodretsova, K. S. Bagdasarov, and A. A. Kaminskii, High-power Y3Al5O12:Nd3+ laser with an explosion-type lamp, Soviet Journal of QuantumElectronics 1972, 2 (2):183~184.
[50] P. Pencikowski, and P. Csik., A long-range synthetic vision system combining a pyrotechnic-pumped laser and range-gated camera, IEEE proceedings of 1996 Aerospace applications conference, (Pico Rivera,CA,USA, 1996), 97~102.
[51] K. Andrew, US Navy reveals laser concepts, Janes Defence weekly 2003, 39 (26):8.
[1]韩颂青,刘吉平,贵大勇,高温燃烧体系的光辐射,火工品1998, (3):37~40.
[2]唐桂林,杜志明,赵家玉等,环保型绿色火焰剂的研究,含能材料2004, 12 (6):368~370.
[3]蔡小舒,季琨,赵志军,不同种类燃烧火焰的辐射光谱测量,工程热物理学报2004, 25 (1):171~173.
[4]蒲薇华,杜志明,红外诱饵剂辐射光谱性能测试的一种新方法,兵工学报2003, 24 (3):399~402.
[5]王宏,李春迎,张小玲, FTIR光谱遥测固体火箭推进剂燃气辐射能,含能材料2004, 12 (3):178~181.
[6]王晓丽,真空蒸镀钝化炸药薄膜的机理和性能研究:工学博士学位论文,北京:北京理工大学, 2004.
[7] A. E. Gash, R. L. Simpson, and J. H. Satcher, energetic nanocomposites with sol-gel chemistry: synthesis, safety, and characterization, 29th international pyrotechnic seminar (Westminster, 2002).
[8]郭秋霞,聂福德,杨光成等,溶胶凝胶法制备RDX/RF纳米复合含能材料,含能材料2006, 14 (4):268~271.
[9]王晓丽,焦清介,微/纳米含能薄膜材料的制备与应用研究,含能材料2006, 14 (2):140~142.
[10] A. Gash, J. Satcher, R. Simpson, et al., Nanostructured energetic materials with sol-gel chemistry, Materials research society fall meeting, (Boston, MA, United States, 2003).
[11]潘功配,杨硕,烟火学,北京:北京理工大学出版社, 1997.
[12] R.W.B.Pearse, and A.G.Gaydon, The identification of molecular spectra, New York: Halsted Press 1976, 59.
[13] W.E.Kaskan, and R.C.Milliken, Source of Green Bands from Boron-Containing Flames, J. Chem. Phys. 1960, 32:1273~1274.
[14] M. Charton, and A.G.Gaydon, Band spectra emitted by Stronium and Barium in arcs and flames, Proc. Phys.Soc. 1956, 69 (A):520~526.
[15]希洛夫,烟火药火焰的发光,马永利,北京:国防工业出版社, 1959.
[16]刘晓慧,关翔云,孙长征,浅谈火工品药剂的粘合作用,火工品2003, (4):42~44.
[17]堵平,何卫东,王泽山,二氧化钛在发射药燃烧中的阻燃作用研究,含能材料2005, 13 (2):99~102.
[18] J. J.Granier, and M. L.Pantoya, Modeling Laser Ignition and Heat Propagation in Nanocomposite Thermits, AIAA/ASME Joint Thermophysics and Heat Transfer Conference, (St. Louis,Missouri, 2002).
[19] B. Berger, Parameters Influencing the Pyrotechnic Reaction, Propellants, Explosives, Pyrotechncis 2005, 30 (1):27~35.
[20] Y.F.Ivanonv, M.N.Osmonoliev, V.S.Sedoi, et al., Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions, Propellants, Explosives, Pyrotechnics 2003, 28 (6):319~333.
[21] K. Engelen, M. H.Lefebvre, and A. Hubin, Properties of a Gas-Generating Composition Related to the Particle Size of the Oxidizer, Propellants, Explosives, Pyrotechnics 2002, 27:290~299.
[1] E. Shafirovich, S. K. Teoh, and A. Varma, Combustion of levitated titanium particles in air, Combustion and Flame 2008, (152):262~271.
[2]万振刚,蔡小舒,季琨等,火焰辐射的Marcov模型及燃烧预测,工程热物理学报2003, 24 (5):891~893.
[3]周新利,李燕,刘祖亮等, FTIR光谱遥测红外药剂的燃烧温度,光谱学与光谱分析2002, 22 (5):764~766.
[4]陈明华,路桂娥,江劲勇等, Mg/KNO3药剂的燃烧与辐射性能研究,军械工程学院学报2005, 17 (2):13~15.
[5]杨硕,杨利,许又文,几种烟火药火焰光谱的研究,北京理工大学学报1998, 18 (5):651~655.
[6] V. Weiser, and N. Eisenreich, Fast Emission Spectroscopy for a Better Understanding of Pyrotechnic Combustion Behavior, Propellants, Explosives, Pyrotechncis 2005, 30 (1):67~78.
[7]希洛夫,烟火药火焰的发光,马永利,北京:国防工业出版社, 1959.
[8] M.Binnewies, and E.Milke, Thermochemical Data of Elements and Compounds, Second, Hannover: Wiley, 2002.
[9] C.TH.J.阿尔克梅德, R.赫尔曼,分析火焰光谱学原理,林守麟,寿曼立译,北京:地质出版社, 1979.
[10]焦清介,常非,许又文等,含能材料热力学计算在闪光烟火药剂配方设计中的应用,火工品2002, (1):15~18.
[11] C.L.Greenlee, and P.B.Butler, Influence of Product Species Selection on Thermochemical Equilibrium Calculations.Part I: Energetic Materials, Propellants, Explosives, Pyrotechnics 1997, 22:15~22.
[12] M. Suceska, Evaluation of Detonation Energy from EXPLO5 Computer Code Results, Propellants, Explosives, Pyrotechnics 1999, 24:280~285.
[13] G. V.Belov, Thermodynamic Analysis of Combustion Products at High Temperature and Pressure, Propellants, Explosives, Pyrotechnics 1998, 23:86~89.
[14] T.Vladimiroff, Y.P.Carignan, and D.S.Chiu, Flame Temperature Calculations at High Temperature and Pressure, Propellants, Explosives, Pyrotechncis 1994, 19:281~285.
[15]贺增弟,蔡锁章,火药燃烧平衡组成计算中的最优化数学模型,华北工学院学报2003, 24 (5):332~335.
[16]王天放,李疏芬,最小自由能法求解GAP在等压绝热条件下的燃烧产物,火炸药学报2003, 26 (4):16~19.
[17]郭汉杰,赵玉祥,最小自由能原理的SUMT方法,北京科技大学学报1992, 14 (5):502~508.
[18]王雪,潘功配,李毅,最小自由能法烟火剂平衡产物计算,火炸药学报1999, 22 (4)
[19]许小平,张唯,李欣,惩罚函数法计算燃烧产物的平衡组分,宇航学报1994, 3:90~95.
[20]崔庆忠,焦清介,基于最小自由能原理设计黑火药组成,含能材料2004, 12 (4):201~217.
[21]宋东明,潘功配,王乃岩,基于最小自由能法的烟火药燃烧产物预测模型,弹箭与制导学报2006, 26 (1):120~122.
[22] J. F. Waymouth, and J. W. Shaffer, Investigation of the feasibility of pumping high energy neodymium glass lasers by chemical flashlamps, DE 85-012962,1984.
[23] C. L. Smith, and P. J. Kisatsky, An investigation into the feasibility of a pyrotechnic laser pump, AD 420238,1963.
[24] C. L. Smith, E. Homentowski, and C. Stokes, Direct Nondestructive pumping of Ruby Lasers by Chemical Means, Applied Optics 1967, 6 (6):1130~1131.
[25] C. T. J.阿尔克梅德, R.赫尔曼,分析火焰光谱学原理,林守麟,寿曼立(译),北京:地质出版社, 1979.
[26] M. Garbuny, Optical Physics,New York and London: Academic press, 1965.
[27] K. Rohlena, J. Beranek, and K. Masek, Modeling of pumping kinetics of an iodine photodissociation laser with long pumping pulse, Proceedings of SPIE-Modeling and Simulation of Laser Systems II, (Los Angeles, CA, USA, 1991), 259~268.
[28]邱德仁,原子光谱分析,上海:复旦大学出版社, 2002, 53~54.
[29] A. A. Kaminskii, S. N. Bagayev, K. Ueda, et al., 5.5J pyrotechnically pumped Nd:YAG ceramic laser, Laser Phys. Lett. 2006, 3 (3):124~128.
[30] B. Higgins, M. Q. McQuay, F. Lacas, et al., An experimental study on the effect of prssure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames, Fuel 2001, 80:1583~1591.
[31] W. Finkelnburg, Conditions for Blackbody Radiation of Gases, J.O.S.A. 1949, 39 (2):185~186.
[1]汪志诚,热力学统计物理,第二版,北京:高等教育出版社, 1993.
[2]胡润芝,纳米材料在固体推进剂中的应用研究,固体火箭推进剂学术会议论文集, 2003),
[3]张锐,黄碧霞,何友昭,原子光谱分析,合肥:中国科学技术大学出版社, 1991.
[4] C.TH.J.阿尔克梅德, R.赫尔曼,分析火焰光谱学原理,林守麟,寿曼立(译),北京:地质出版社, 1979.
[5]刘颂豪,陶瓷-固体激光工作物质探索的新热点,激光与红外2005, 35 (6):385~390.
[6] W.Koechner, Solid State Laser Engineering, 6th, New York: Springer, 2005.
[7]干福熹,邓佩珍,激光材料,上海:上海科学技术出版社, 1996.
[8] F.X. Gan, Optical and spectroscopic properties of glass, Berlin: Springer -Verlag, 1992, 148.
[9] C. Brecher, L. A. Riseberg, and M. J. Weber, Line-narrowed fluorescence spectra and site-dependent transition probabilites of Nd3+ in oxide and fluoride glasses, Physical Review B 1978, 18 (10):5799~5811.
[10]侯朝霞,钕在氟氧化物和氧化物玻璃中的光谱分析,兵器材料科学与工程2006, 29 (3):72~74.
[11]吴长锋,秦伟平,陈宝玖等, AlF3基氟化物玻璃中Eu3+的光谱性质与局域结构的关系,发光学报2001, 22 (4):393~396.
[12]张丽,黄莉蕾,罗宏雷, Er/Yb共掺四种玻璃中上转换发光效率的比较及研究,中国计量学院学报2006, 17 (4):320~324.
[13] A.A.Kaminskii, S.N.Bagayev, K.Ueda, et al., 5.5J pyrotechnically pumped Nd:YAG ceramic laser, Laser Phys. Lett. 2006, 3 (3):124~128.
[14] Y. Rabinovitch, D. Tétard, M. D. Faucher, et al., Transparent polycrystalline neodymium doped YAG synthesis parameters laser efficiency, Optical Materials 2003, 24:345~351.
[15]丁君,杨秋红,唐在峰等, Nd掺杂的氧化镧钇透明激光陶瓷的光谱性能研究,物理学报2006, 55 (12):6414~6418.
[16]宋平新,赵志伟,徐晓东等, Tm:YAG晶体的生长及吸收特性,人工晶体学报2004, 33 (3):376~379.
[17]朱长星,用于激光抽运源的高能含能材料研究:工学硕士论文,南京:南京理工大学, 2005.
[1] A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, Pyrotechnically excited quasi-cw laser, Soviet physics Technical physics 1969, 14 (3):396~402.
[2] A. A. Kaminskii, A. I. Bodretsova, and S. I. Levikov, Pyrotechnically excited quasi-cw laser, Soviet physics Technical physics 1969, 14 (3):396~402.
[3]肖楠,姜宗福,华卫红,烟火泵浦钕玻璃激光器出光实验研究,强激光与粒子束2008, 20 (1):17~21.
[4]肖楠,姜宗福,华卫红,雾化Mg粉对烟火抽运源性能的影响,强激光与粒子束2008, 20 (11):1378~1382.
[5]洪广言,无机固体化学,北京:科学出版社, 2002.
[6]肖楠,吴文健,姜宗福,烟火泵浦激光器泵浦材料发光光谱研究,火工品2006, (4):4~8.
[7]朱长星,用于激光抽运源的高能含能材料研究:工学硕士论文,南京:南京理工大学, 2005.
[8] H. T. Powell, A. C. Erlandson, and K. S. Jancaitis, Characterization of high power flashlamps and application to Nd:glass laser pumping, UCRL 94147,16,1986.
[9] K. S. Jancaitis, D. A. Masquelier, and H. T. Powell, Blackbody pumping of neodymium laser glass, CLEO '85: 5th IEEE/OSA Conference on Lasers and electro-Optics, (Baltimore, MD, USA, 1985), 252~253.
[1] W. Finkelnberg, and J.P.Latil, A Fully Automatic Continually Operating, Very High-Intensity, Carbon Arc Lamp, J.O.S.A. 1954, 44 (1):1~5.
[2] P. Minguzzi, F. Strumia, and P. Violino, Lithium Spectral Lamp for Optical Pumping, J.O.S.A. 1966, 56:707~708.
[3] E.N.Gaidukov, P.I.Gerashchenko, and P.G.Konvisar, Characteristics of K-Rb lamps as the pump sources for YAG:Nd lasers, Sov.J.Quantum Electron 1983, 13 (3):368~369.
[4] H.N.Olsen, Partition Function Cutoff and Lowering of the Ionization Potential in an Argon Plasma, Physical Review 1961, 124 (6):1703~1708.
[5] W.Koechner, Solid State Laser Engineering, 6th, New York: Springer, 2005.
[6] J. F. Waymouth, and J. W. Shaffer, Investigation of the feasibility of pumping high energy neodymium glass lasers by chemical flashlamps, DE 85-012962,1984.
[7] J.H.Goncz, and P.B.Newell, Spectra of Pulsed and Continous Xenon Discharges, J.O.S.A. 1966, 56 (1):87-92.
[8] G. R. Simpson, Continuous Sun-Pumped Room Temperature Glass Laser Operation, Applied Optics 1964, 3 (6):783~784.
[9] C.G.Young, a sun pumped cw one-watt laser, Applied Optics 1966, 5 (6): 993~997.
[10] M. Weklser, and J. Shwartz, solar pumped solid state lasers, IEEE Journal of Quantum Electronics 1988, 24 (6)
[11] T. Saiki, S. Uchida, K. Imasaki, et al., Oscillation Property of Disk-type Nd/Cr:YAG ceramic lasers with quasi-solar pumping, OSA/CLEO, 2005).
[12] O. B. Danilov, I. M. Belousova, A. A. Mak, et al., Possibility of realizing fullerene-oxygen-iodine laser with solar pumping (Sun-Light FOIL), Proc. SPIE 2001.
[13]赵长明,赵彬,何建伟,太阳光泵浦固体激光器及其空间应用,红外与激光工程2006, 35 (Supplement):95~99.
[14] A.A.Kaminskii, S.N.Bagayev, K.Ueda, et al., 5.5J pyrotechnically pumped Nd:YAG ceramic laser, Laser Phys. Lett. 2006, 3 (3):124~128.