摘要
随着经济与社会的发展,水电事业也在最近的几十年间取得了飞速的发展,随着混流式水轮机组单机容量和引用水头的增大,其结构也更加复杂,随之而来的机组稳定性问题也日益突出。长期以来水轮发电机组的横向振动问题受到国内外研究者的普遍重视,特别是混流式水轮机组,当负荷超过一定值时会发生强烈的弯曲振动,振动一旦发生,振幅就会不断增大进而导致整个机组甚至厂房的振动。经检验分析,导致此类弯曲振动的原因之一是通过水轮机上冠间隙内的不平衡流体所产生的流体力和力矩,因此本文针对此类工程实际问题,设计了混流式水轮机涡动和进动过程中测量上冠间隙内部流场和流体力的试验;建立了转轮涡动和进动过程中计算密封内部流场和作用在转轮上冠流体力的数值模型;分析了涡动流体力矩和进动流体力矩的自激效应;探讨了流体动力矩对轴系稳定性的影响。研究结果可为分析混流式水轮机组的稳定性提供理论依据和参考。
第一章为绪论部分。结合国内外对于混流式水轮机组流体激振的研究现状和工程实际提出课题的研究背景和意义。介绍了关于密封流体激振的国内外研究现状与进展,并对密封流体激振在转子涡动和进动两方面的研究进展进行归纳和总结。
第二章为模型试验部分。介绍了模型试验所用的试验装置、试验参数的选取和所使用的试验方法。进行了四轴力传感器的校核试验,得到了用于传递示波器输出与作用在轴端的外力之间的传递矩阵。进行了混流式水轮机转轮涡动、进动过程的惯性力计算和试验,分析了计算结果和试验结果的有效性。同时,概括性地介绍了流体力试验的方法和内容。
第三章为数值模拟部分。采用简化的N-S方程,结合转轮上冠密封的几何形状,建立了计算混流式水轮机涡动和进动过程中间隙内部流场分布特性和作用在上冠的流体力和流体力矩的整体流动数值模型,探讨了整体流动模型的数值解法。利用计算机Fortran语言编写了整体流动数值模型的计算程序。
第四章为混流式水轮机涡动过程中作用在转轮上冠的流体力矩的自激效应研究。进行了混流式水轮机上冠间隙流的定常压力试验和数值模拟,研究了间隙流内部稳态流场的分布特性。建立了涡动流体力矩作用下悬臂梁转子轴系统的振动模型,得出用于判断涡动流体力矩是否具有自激效应的判断准则。通过试验和数值结果的对比,研究了泄漏流速、进口处预旋速度和轴向间隙宽度对涡动流体力矩随涡动速度比的变化曲线和自激效应的影响。分析了转轮涡动过程中,上冠间隙内部非稳态流场的分布特性。
第五章为混流式水轮机进动过程中,作用在转轮上冠的流体力矩的自激效应研究。研究了混流式水轮机进动过程中,上冠间隙流内部的稳态流场分布特性。通过数值模拟和模型试验结果的对比,检验分析了间隙内泄漏流速、进口处预旋速度、轴向间隙宽度和转轮旋转对进动流体力矩自激效应的影响,探讨了进动过程中,间隙内部的非稳态流场分布特性。
第六章为流体力矩所诱发的轴系不稳定性研究。通过对试验所得到的涡动和进动流体力矩进行曲线拟合,得到并讨论了由上冠密封所产生的转子动力特性系数。建立一集总参数数学模型,利用Matlab语言编制了模型的计算程序,对悬臂梁转子轴系统的稳定性进行了系统地研究和分析。
With the developments of economy and society, the hydropower has developed rapidly in recent years. Hence with the increase in the capacity and the dimension of the hydroelectric generating set, the structure becomes more and more complicated. As a result, the problem of stability of a generating set is more and more prominent.
Much attention has been paid on the lateral vibration of the hydroelectric generating set, especially the Francis turbine, for a long time. When the load exceeds a certain value, a severe flexural vibration will occur, and the amplitude will increase constantly. Furthermore, it can result in the vibration even destroy of the power house. After detailed checking, it was shown that this vibration is a kind of self-excited vibration which caused by the fluid force and moment acting on the backshroud of the runner associated with the leakage flow through the back chamber. As a result, based on the actual vibration problem, model tests were designed on the fundamental characteristics of the flow field in the crown clearance of a Francis turbine runner in whirling and precession motions, respectively. And so the fluid forces and moments under various conditions were measured. The numerical simulation model was established to calculate the characteristics of the flow field in the clearance and the fluid forces and moments. The self-excited effect of the whirling moment and precession moment was analyzed. The stability of a cantilevered shaft-disk system subjected to each fluid moment was discussed. These conclusions can provide the material and the reference of this kind of self-excited vibration of the Francis turbine.
Chapter one is the introduction section. According to the research status of the topic on the vibration induced by the fluid of the Francis turbine at home and abroad, the background and the significance of this research topic are put forward. The home and abroad research status and progress of vibration excited by the seal or clearance flow are introduced. The advance of the vibration induced by the clearance flow in the aspects of whirling and precession motions are concluded and summarized, respectively.
The second chapter is about the model test. The experimental apparatus, the selection of the parameters and the methodology of the measurement of the experiment were introduced. The calibration test of the four-axis force sensor dynamometer was conducted to get the transfer matrix between the force acting on the end of the cantilevered shaft and the output of the digital scope. The inertia test was also conducted theoretically and experimentally, and the results of the calculation and experiment were compared and validated. The method and the content of the fluid force measurement were generally introduced.
The third chapter is about the numerical simulation. Based on the simplified Navier-Stokes equations and the geometry of the crown clearance of the Francis turbine runner, the numerical bulk flow model was established to calculate the steady and unsteady flow field characteristics in the crown clearance and the fluid forces and moments on the crown of the runner in whirling and precession motions. The solutions of the steady and unsteady components were discussed. The computational program of the bulk flow model based on the computer language Fortran was made for calculation.
The fourth chapter is about the self-excited effect of the whirling moment acting on the crown of the Francis turbine runner. The steady pressure experiments and calculations under various conditions in the crown clearance of the Francis turbine runner were carried out in order to study about the fundamental characteristics of the steady flow field distribution. The stability analysis model of a cantilevered shaft disk system subjected to the whirl moment was established through the structural coupling between the linear and angular displacement. The criterion for determining the self-excited effect of the whirl moment was obtained. Through the comparison of the experimental result and the computational result of the whirl moment under various leakage flow rates, various preswirl velocities at the inlet of the radial clearance and various widths of the axial clearance, the self-excited effect of the whirl moment and the unsteady flow filed distribution were discussed.
The fifth chapter is about the self-excited effect of the precession moment acting on the crown of the Francis turbine runner. The characteristics of the steady flow field in the clearance in precession motion were studied by model test and numerical simulation. Through the comparison of the computational and the experimental results, the self-excited effects of the precession moments were analyzed. The effect of the leakage flow rate in the clearance, the preswirl velocity, the axial clearance and the rotation of the disk on the precession moment were examined, respectively. The unsteady flow field distributions in the clearance in precession motion were discussed under various conditions.
The sixth chapter is about the instability analysis of the cantilevered shaft disk system under the fluid force moments. The rotordynamic coefficients used in the rotordynamic instability analysis were obtained by curve fitting the experimental results of the whirling and precession moments, respectively. The effect of the coefficients on the instability was discussed. Through establishing a lumped parameter model subjected to the whirl and/or the precession moment(s) by using Matlab software, the instabilities of the system were discussed and analyzed.
引文
[1]潘家铮.大力发展水电:中国持续发展的必由之路[J].中国三峡,2009,1:5-12.
[2]潘家铮.中国水利建设的成就、问题和展望[J].中国工程科学,2002,4(2):42-51.
[3]辛晟,郭磊.水力发电机组振动故障诊断技术综述[J].水利电力科技,2009,35(4):9-13.
[4]贺梅.混流式机组水力振动研究和破坏原因分析[D].西安:西安理工大学,2000.
[5]黄剑锋.混流式水轮机全流道内部三维流场数值模拟[D].昆明:昆明理工大学,2007.
[6]朱卫国.大型混流式机组水电站厂房结构水力激振研究[D].南宁:广西大学,2004.
[7]左光璧.水轮机[M].北京:中国水利水电出版社,1995.
[8]杨晓明.水电站机组振动及其与厂房的耦联振动研究[D].大连:大连理工大学,2006.
[9]张伟.水轮发电机组轴系统动力学研究[D].大连:大连理工大学,2008.
[10]周昊.大型混流式水轮机稳定性研究及对策[J].水电站机电技术,2005,28(5):5-9.
[11]周理兵,马志云.大型水轮发电机不同工况下不平衡磁拉力[J].大电机技术,2002,(2):26-29.
[12]曲风波,孙玉田,曲大庄.水轮发电机的不平衡磁拉力[J].大电机技术,1999,(4):1-4.
[13]王琳.大型水轮发电机不平衡磁拉力数值计算[J].华中理工大学学报,1997,25(12):73-75.
[14]姜培琳,虞烈.电机不平衡磁拉力及其刚度的计算[J].大电机技术,1998,(4):32-34.
[15]白晖宇,荆建平,孟光.电机不平衡磁拉力研究现状与展望[J].噪声与振动控制,2009,(6):5-8.
[16]张双全.大型混流式水轮机水力稳定性研究[J].中国工程科学,2002,4(2):42-51.
[17]张双全.大型混流式水轮机水力稳定性研究[D].武汉:华中科技大学大学,2008.
[18]马震岳,董毓新.水轮发电机组动力学[M].大连:大连理工大学出版社,2003.
[19]何立冬,夏松波.转子密封系统流体激振及其减振技术研究简评[J].振动工程学报,1999,12(1):64-72.
[20]姜培林,虞烈.水轮机阶梯式口环水封的转子动力特性系数的计算[J].水力发电学报,1998,(4):56-65.
[21]李庆彬,余波.小木岭二级站顶盖压力过高的成因分析及技改措施[J].水电能源科学,2007,25(2):113-115.
[22]马震岳,董毓新.水轮机转轮密封处水流的动力特性及其对机组自振特性的影响[J].大电机技术,1987,(06):43-50.
[23] #12
[24] #12
[25] Yoshida Y, Tsujiomto Y, Ohashi H, et al. Measurements of the Flow in Backshroud/Casing Clearance of Precessing Centrifugal Impeller[J]. International Journal of Rotating Machinery, 1997, 3(4): 259-268.
[26] Brennen C E, Acosta A J, Caughey T K. A Test Program to Measure Fluid Mechanical Whirl-excitation Forces in Centrifugal Pumps[C], First Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, NASA Conf. Pub,1980,2133:229-235.
[27]Yoshida Y, Tsujimoto Y, Yokoyama D, et al. Rotordynamic Fluid Force Moments on an Open-type Centrifugal Compressor Impeller in Precessing Motion[J]. International Journal of Rotating Machinery,2001,7(4),237-251.
[28]Childs D W, MOYER D. Vibration Characteristics of the HPOTP (high pressure oxygen turbopump) of the SSME (Space Shuttle Main Engine)[J]. ASME Journal of Engineering for Gas Turbines and Power,1985,107(1):152-159.
[29]Alford J S. Protecting Turbomachinery from Self-excited Rotor Whirl[J]. Journal of Engineering for Power,1965,87(4):189-198
[30]Rosenberg C. Investigating aerodynamics transverse force in labyrinth seals in cases involving rotor eccentricity. C. E. Tran.083[J]. Translated from Energe nmashinostrojohic,1974, (8):15-17.
[31][瑞士]W特劳佩尔(郑松宇等译).热力透平机.北京:机械工业出版社,1988:603-609.
[32]Thomas H J, Unstable Natural Vibration of Turbine Rotors Induced by the Clearance Flow in Glands and Blading[M]. Bull. De. L.A.I.M 71 (11/12),1958.
[33]MURPHY B T, Vance J M. Labyrinth Seal Effects on Rotor Whirl Instability[J]. Inst. of Mechanical Engineer,1980:369-373.
[34]Black H F. Effects of Hydraulic Forces in Annular Pressure Seals on the Vibration of Centrifugal Pump Rotors[J]. Journal of Mech. Eng. Science,1969,11 (2):206-213
[35]Childs D W, Kim C H. Analysis of Testing for Rotordynamic Coefficients of Turbulent Annular Seals with Different Directionally Homogeneous Surface Roughness Treatment for Rotor and Stator Elements[J]. Journal of Tribology,1985; 107:296-306
[36]Childs D W. Finite Length Solutions for Rotordynamic Coefficients of Turbulent Annular Seals[J], ASME J. Lubr. Tech.,1983,105:429-436.
[37]Childs D W. Fluid Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Rotordynamic Calculations[J]. ASME J. Vibrations, Acoustics, Stress and Reliability in Design,1989,111:216-225.
[38]Hirs G G. A Bulk-Flow Theory for Turbulence in Lubricant Film [J]. ASME J. Lubr. Technol., 1973,95:137-146.
[39]Nordmann R, Dietzen F J. Calculating Rotordynamic Coefficients of Seals by Finite Difference Techniques[C]. The 4th Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery,Taxas A&M University,1986,77-98
[40]马震岳.水轮发电机组及压力管道的动力分析[D].大连:大连理工大学,1988.
[41]任兴民,顾家柳,秦卫阳.具有封严蓖齿转子系统的动力稳定性分析[J].应用力学学报,1996,13(2):77-83.
[42]沈庆根,李烈荣,郑水英.迷宫密封的两控制体模型与动力特性研究[J].振动工程学报,1996,9(1):24-30.
[43] Bently D E, Muszvnska A. Role of Circumferential Flow in the Stability of Fluid-Handling Machine Rotors[C]. The 5th Workshop on Rotordynatnic Instability Problems in High Performance Turbomachinery, Taxas A&M University, 1988:1-15.
[44] Muszynska A and Bently D E. Frequency Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/Bearing/Seal Systems and Fluid Handling Machines[J]. Journal of Sound and Vibration, 1990,143(1):103-124.
[45] Muszynska A. Model Testing of Rotor/Bearing Systems [J]. The International Journal of Analytical and Experimental Modal Analysis, 1996,1(3):15-34
[46] Muszynska A. Rotordynamics[M]. Boca Raton: CRC Press,2005.
[47]杨晓明,水轮机迷宮密封系统非线性动力稳定性研究[J].大连理工大学,2007,47(1):95-100.
[48]李松涛,许庆余,万方义.迷宫密封转子系统非线性动力稳定性的研究[J].应用力学学报,2002,19(2):27-30
[49]陈予恕,丁千.非线性转子—密封系统的稳定性和Hopf分岔研究[J],振动工程学报,1997,10(3):368-374
[50] Childs D W. Dynamic Analysis of Turbulent Annular Seals Based on Hirs[J], Journal of Lubrication Technology, 1983,105(3):429-436
[51]大橋秀雄.流体機械[M],森北出版株式会社,東京,1971.
[52] Alford J S. Protecting Turbomachinery from Self-Excited Rotor Whirl[J]. Journal of Engineering for Power, 1965,10:333-344.
[53] Childs D W. The Space Shuttle Main Engine High-Pressure Fuel Turbopump Rotordynamic Instability Problem[J]. ASME Journal of Engineering for Power, 1978,100(1):48-57.
[54] Childs D W, Moyer D S. Vibration Characteristic of the HPOTP (High-Pressure Oxygen Turbopump) of the SSME(Space Shuttle Main Engine) [J]. ASME Journal of Engineering for Gas Turbines and Power, 1985,107(1):152-159.
[55] Ehrich F, Childs D W. Self-Excited Vibration in High-Performance Turbomachinery[J]. Mechanical Engineering,1984, 5:66-79.
[56] Addkesee A J, Altiparmak D, Pan S. Whirl Measurements on Leakage Flows in Turbomachinery Models[J]. Rotordynamic Instability Problems in High-Performance Turbomachinery,1993:167-178.
[57] Suzuki T, Prunieres R, Horiguchi H, et al. Measurements of Rotordynamic Forces on an Artificial Heart Pump Impeller [J]. Journal of Fluids Engineering , 2007 ,129(11):1422-1427.
[58] #12
[59] #12
[60] Suzuki T, Prunieres R, Horiguchi H, et.al. Experimental Measurement of Rotordynamic Fluid Forces on an Open-Type Centrifugal Impeller in Whirling Motion [C]. Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISR0MAC12), 2008, 20131:1-7.
[61] #12
[62] #12
[63] #12
[64] #12
[65] Suzuki T, Prunieres R, Horiguchi H, et al. The Rotordynami Fluid Forces on an Artificial Heart Pump Impeller in Whirling Motion[J]. JSME Series B, 2007, 73(725):205-212.
[66] #12
[67] Black H F, Allaire P E, Barrett L E. Inlet Flow Swirl in Short Turbulent Annular Seal Dynamics[C]. 9th International Conference on Fluid Sealing, 1981,141-152.
[68] Kirk R G, Hustak J F, Schoeneck K A. Evaluation of Liquid and Gas seal for Improved Design of Turbomachinery[C]. Proceeding of International Conference on Vibrations in Rotating Machinery, 1988, 387-394.
[69] Tam L T, Przekwas A J, Muszynska A, et al. Numerical and Analytical Study of Fluid Dynamic Forces in Seals and Bearings[J]. Journal of Vibration and Acoustics, Stress and Reliability in Design, 1988, 10:315-325.
[70] Baskharone E A, Hensel S J. A New Model for Leakage Prediction in Shrouded-impeller Turbopumps. [J].ASME Journal of Fluids Engineering, 1989, 111(2):118-123.
[71] Jery B, Brennen C E, Caughey T K, Acosta A. Forces on Centrifugal Pump Impellers[C]. Proceedings of the Second International Pump Symposium, 1985: 21-32.
[72] Jery B. Experimental Study of Unsteady Hydrodynamic Force Matrices on Whirling Centrifugal Pump Impellers[D]. Pasadena, California Institute of Technology,1986.
[73] #12
[74]Ohashi H, and Shoji H. Lateral Fluid Forces on Whirling Centrifugal Impeller (2nd Report:Experiment in Vaneless Diffuser) [J]. ASME Journal of Fluids Engineering, 1987,109(2):100-106.
[75]Ohashi H, Sakurai A, Nishihama J. Influence of Impeller and Diffuser Geometries on the Lateral Fluid Forces of Whirling Centrifugal Impeller [C].NASA, Rotordynamic Instability Problems in High-Performance Turbomachinery,1988,285-306.
[76]Ohashi H,Imai H, Sakurai A, Nishihama J. Latera; Fluid Forces of Whirling Centrifugal Impellers with Various Geometries[C]. Proceeding of 3rd Japan-China Joint Conference on Fluid Machinery,1990,147:-154.
[77]Ohashi H. Vibration and Oscillation of Hydraulic Machinery(International Hydraulic Machinery Series)[M]. Aldershot:Avebury Technical,1991.
[78]Tsujimoto Y, Acosta A J, Yoshida Y. A Theoretical Study of Fluid Forces on a Centrifugal Impeller Rotating and Whirling in a Vaned Diffuser[J]. JSME Series B,1988, 54(505):2266-2274.
[79]Tsujimoto Y, Acosta A J, Brennen C E. Theoretical Study of Fluid Forces on a Centrifugal Impeller Rotating and Whirling in a Volute[J]. ASME Journal of Vibration and Acoustic, Stress and Reliability in Design,1988,110:263-269.
[80]Yoshida Y, Tsujimoto Y, Ishii N, et al. The Rotordynamic Forces on an Open-type Centrifugal Compressor Impeller in Whirling Motion[J]. ASME Journal of Fluids Engineering,1999,121(2):259-265.
[81]Hiwata A, Tsujimoto Y. Theoretical Analysis of Fluid Forces on an Open-Type Centrifugal Impeller in Whirling Motion [J].ASME Journal of Fluids Engineering,2002, 124(2):342-347.
[82]Chamieh D S, Acosta A J, Brennen C E, et al. Experimental Measurements of Hydrodynamic Forces and Stiffness Matrices for a Centrifugal Pump-Impeller[J].ASME Journal of Fluids Engineering,1985,107(3):307-315.
[83]Adkins D, Brennen C E. Analysis of Hydrodynamic Radial Forces on Centrifugal Pump Impellers[J]. ASME Journal of Fluid Engineering,1988,110(1):20-28.
[84]Guinzburg A, Brennen C E, Acosta A J, et al. Measurements for the Rotordynamic Shroud Forces for Centrifugal Pumps[C].ASME Fluid Machinery Forum 1990,1990:23-26.
[85]Guinzburg A. Rotordynamic Forces Generated By Discharge-to-Suction Leakage Flows in Centrifugal Pumps[D]. Pesadena:California Institute of Technology,1992.
[86]Guinzburg A, Brennen C E, Acosta A J. The Effect of Inlet Swirl on Rotordynamic Shroud Forces in Centrifugal Pump [J]. ASME Journal of Engineering for Gas Turbine and Power, 1993,115(2):287-293.
[87] Guinzburg A. Brennen C E, Acosta A, et al. Experimental Results for the Rotordynamic Characteristics of Leakage Flows in Centrifugal Pumps[J]. ASME Journal of Fluids Engineering, 1994, 116(1):110-115.
[88] Brennen C E. Hydrodynamics of Pumps[M]. Oxford: Concepts ETI and Oxford University Press, 1994.
[89] Sivo J, Acosta A J, Brennen C E, et al. The Influence of Swirl Brakes on Rotordynamic Forces Generated by Discharge-to-Suction Leakage Flows in Centrifugal Pumps [J]. ASME Journal of Fluid Engineering, 1995, 117(1):104-108.
[90] Uy R V, Brennen C E. A Parametric Evaluation of the Effect of Inlet Swirl on the Rotordynamic Forces Generated by Discharge-to-Suction Leakage Flows in Shrouded Centrifugal Pumps[C]. 1997 ASME Fluids Engineering Division Summer Meeting, 1997,1-7.
[91] Uy R V, Bircumshaw B, Brennen C E. Rotordynamic Forces from Discharge-to-Suction Leakage Flows in Shrouded Centrifugal Pumps: Effects of Geometry[J]. JSME International Journal: Fluids and Thermal Engineering, 1998, 41(1):208-213.
[92] Uy R V, Brennen C E. Experimental Measurements of Rotordynamic Forces Caused by Front Shroud Pump Leakage[J]. ASME Journal of Fluids Engineering, 1999,
[93] Hsu Y. Rotordynamic Forces Generated By Annulus Leakage Flows in Centrifugal Pumps[D]. Pesadena: California Institute of Technology, 2001.
[94] Hsu Y, Brennen C E. Fluid Flow Equations for Rotordynamic Flows in Seals and Leakage Paths[J].ASME Journal of Fluids Engineering, 2002, 124(1):176-181.
[95] Hsu Y, Brennen C E. Effect of Swirl on Rotordynamic Forces Caused by Front Shroud Pump Leakage[J]. ASME Journal of Fluids Engineering, 2002, 124(4):1005-1010.
[96] Brennen C E, Acosta A J. Fluid-Induced Rotordynamic Forces and Instabilities[J]. Structural Control and Health Monitoring, 2006, 13(1): 1545-2255.
[97]姚大坤.混流式水轮机的自激振动分析[J].大电机技术,1998,5:43-46.
[98] Ohashi H, Imai H, Tsuchihashi T. Fluid Force and Moment on Centrifugal Impellers in Precession Motion[C]. FED (American Society of Mechanical Engineering), 1991,119:57-60.
[99] Yoshida Y, Saito A, Ishizaki S, et al. Measurements of Flow in the Backshroud/Casing Clearance of a Precessing Centrifugal Impeller[C]. Proceedings of the 6th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery,1996, 2:151-160.
[100] #12
[101]Yoshida Y, Tsujimoto Y, Ohashi H, et al. Measurements of the Flow in Backshroud/Casing Clearance of Precessing Centrifugal Impeller[J]. International Journal of Rotating Machinery,1997,3(4):259-268.
[102]Tsujimoto Y, Yoshida Y, Ohashi H, et al. Fluid Force Moment on a Centrifugal Impeller Shroud in Precessing Motion[J]. ASME Journal of Fluids Engineering,1997, 119(2):366-371.
[103]Yoshida Y, Tsujimoto Y, Yokoyama D, et al. Rotordynamic Fluid Force Moments on an Open-type Centrifugal Compressor Impeller in Precessing Motion[C]. Proceedings of the International Gas Turbine Congress,1999:265-271.
[104]Kanemori Y, Iwatsubo, T. Forces and Moments Due to Combined Motion of Conical and Cylindrical Whirls for a Long Seal [J]. ASME Journal of Tribology,1994,116(3):489-498.
[105]Kanemori Y, Iwatsubo, T. Experimental Study of Dynamic Fluid Forces and Moments for a long Annulus Seal[J]. ASME Journal of Tribology,1992,114(4):773-778.
[106]宋志强.水电站机组振动及其与厂房的耦联振动研究[D].大连:大连理工大学,2009.
[107]王正伟,喻疆,方源,等.大型水轮发电机组转子动力特性分析[J].水力发电学报,2005,24(4):62-66.
[108]Childs D W. Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Rotordynamic Calculations[C]. ASME Symposium on Rotating Machinery Dynamics,1987, 2:581-593.
[109]Childs D W. Turbomachinery Rotordynamics[M]. New York:Wiley,1993.
[110]Iwatsubo T, Yang B S, Ibaraki R. Static and Dynamic Characteristics of Parallel-Grooved Seals [C]. NASA CP 2443,1986:99-127.
[111]Childs D W. Rotordynamic Moment Coefficients for Finite-length Turbulent Seals[C]. Proceedings of the IFTOMM Conference.1982,371-378.
[112]Childs D W, Kim C H. Analysis and Testing for Rotordynamic Coefficients of Turbulent Annulus Seals with Different, Directionally-Homogeneous Surface-Roughness Treatment of Rotor and Stator Elements[J]. ASME Journal of Tribology,1985,107(3):296-306.
[113]Gupta M K. Bluk-Flow Analysis for Force and Moment Coefficients of a Shrouded Centrifugal Compressor Impeller[D]. Austin:Texas A&M University,2005.
[114]Gupta M K, Childs D W. Rotordynamic Stability Preditions for Centrifugal Compressors Using a Bulk-Flow Model to Predict Impeller Shroud Force and Moment Coefficients[J]. ASME Journal of Engineering for Gas Turbines and Power,2010, 132(9):091102-1-091102-14.
[115]Yamada Y. Resistance of Flow through Annulus with an Inner Rotating Cylinder[C]. Bulletin of JSME,1962,5(18):301-310.
[116]Nelson C C, Nguyen D T. Analysis of Eccentric Annular Imcompressive Seals (Part 1) [J]. ASME Journal of Tribology,1988:110(2):354-360
[117] Nelson C C, Nguyen D T. Analysis of Eccentric Annular Imcompressive Seals(Part 2) [J].ASME Journal of Tribology 1988:110(2):361-366
[118]Yoshida Y, Tsujimoto Y, Morimoto G, et al. Effects of Seal Geometry on Dynamic Impeller Fluid Forces and Moments [J]. ASME Journal of Fluids Engineering, 2003, 125(5): 786-795.
[119] #12
[120] #12
[121]Horiguchi H, Ueno Y, Takahashi K, et al. Dynamic Characteristics of the Radial Clearance Flow Between Axially Oscillating Rotational Disk and Stationary Disk [C].ASME 2009 Fluids Engineering Division Summer Meeting, 2009, 243-251.
[122]Shoji H, Ohashi H. Hydrodynamic Forces on Whirling Centrifugal Impeller [J]. Transaction of the JSME, series B, 1981, 47(419):1181-1196.
[123] Song B, Horiguchi H, Nishiyama Y, et al. Fluid Force Moment on the Backshroud of a Francis Turbine Runner in Precession Motion[C]. Proceeding of the 62nd Turbomachinery Society of Japan Conference, 2009,7-12.
[124] Song B, Horiguchi H, Nshiyama Y, et al. Fluid Force Moment on the Backshroud of a Francis Turbine Runner in Precession Motion[J]. ASME Journal of Fluids Engineering,2010, 132(5):051108-l-051108-8.
[125] Song B, Horiguchi H, Ma Z, et al. Rotordynamic Moment on the Backshroud of a Francis Turbine Runner Under Whirling Motion [J]. ASME Journal of Fluids Engineering, 2010,132(7):071102-1-071102-9.
[126]钟一諤,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1987.
[127]杨旭娟,蔡敢为,李兆军,等.混流式水轮发电机组主轴系统临界转速分析[J].广西大学学报,2008.33(3):256-260.
[128] #12