EB-PVD制备NiCoCrAl/YSZ微层板组织和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属/陶瓷微叠层材料能够综合陶瓷材料和金属材料的优点,在具有较高的高温强度的同时,还具有较好的室温韧性,从而在航空、航天领域具有光明的应用前景。通常的金属/陶瓷叠层材料是以金属增韧陶瓷基体,从而达到提高陶瓷材料韧性的目的,但金属/陶瓷材料间热膨胀系数相差很大,会在这些叠层材料中引入很大的热应力,造成材料在使用过程中容易失效和破坏。而电子束物理气相沉积(EB-PVD)的陶瓷涂层通常具有柱状晶结构,应变容限大,能在一定程度上跟随金属层的收缩和膨胀,从而能够大大提高金属/陶瓷叠层材料的耐热冲击性和使用寿命,但其柱状晶结构会严重损害涂层的强度。根据这些特点,本文提出了以层状陶瓷增强金属基体的结构和方法,并采用EB-PVD技术,成功制备了NiCoCrAl/YSZ金属基微叠层复合材料,同时借助一些现代化的分析测试手段分析了这些微层板在组织、结构和性能方面的特点。本研究的主要内容包括:NiCoCrAl/YSZ微层板的制备方法;微层板中金属层厚度对其再结晶行为的影响;工艺参数、层厚和热处理制度对微层板的组织结构和性能的影响;微层板的残余应力和断裂过程分析;微层板与单层NiCoCrAl薄板的力学性能和抗氧化性能的比较等。
     研究结果表明,采用EB-PVD技术制备的NiCoCrAl/YSZ微层板具有清晰的层结构,各层的微观结构与基板温度的关系遵从Movchen的经典模型。当基板温度为900℃时,金属层中的晶粒接近于等轴晶,金属相主要以Ni的固溶体的形式存在;陶瓷层为柱状晶结构,其相组成主要为t′-ZrO_2。当基板温度为650℃时,微层板的NiCoCrAl和YSZ层在形核初期都呈等轴晶结构,随着层厚的增加,柱状晶结构变得越来越明显了,柱状晶尺寸也增大了,此时,金属层的γ-Ni基体中,有少量的γ′相析出,而陶瓷层仍主要由t′-ZrO2相构成。当层厚和沉积时其他的工艺参数都相同时,较高的基板温度制备出的NiCoCrAl/YSZ微层板的力学性能要更好些。由于受到岛状生长模式和阴影效应的影响,在两种基板温度下,EB-PVD沉积的材料中,晶粒都成簇生长,晶粒簇沿板厚方向扩展,形成柱状。而且,晶粒簇间的间隙要大于簇内晶粒间的间隙,裂纹易沿晶粒簇界面扩展,造成该处材料发生脆性断裂。而陶瓷层对金属层中的孔或间隙,有一定的封堵作用,因而,通过金属/陶瓷微叠层结构,可以有效限制薄板中的柱状晶、晶粒簇及缺陷尺寸,因而有利于改善层板的力学性能。当基板表面较粗糙时,沉积出的NiCoCrAl/YSZ微层板中会形成较大更弯曲的层界面。大的晶粒簇间隙会降低微层板的室温力学性能,但弯曲的层界面却使微层板的高温力学性能变得更好。
     经1050℃真空热处理后,NiCoCrAl层发生了再结晶,柱状晶结构转变为等轴晶结构。利用有限元模拟的方法计算了多层厚尺度NiCoCrAl/YSZ微层板在热处理温度下,各种层厚的金属层中的热应力情况;并结合微观结构方面的观察,得出以下结论:在陶瓷层厚度一定的情况下,随着韧性相金属层厚度的增加,金属层所受的热应力减小,导致再结晶的形核率和核的长大速度降低,因此,在热处理过程中,过厚的金属层将不容易发生再结晶,而发生再结晶的金属层中的晶粒尺寸也随着层厚的增加而增加。
     对制备态微层板试样在弯曲载荷作用下的裂纹扩展情况的观察表明,陶瓷层强度较低,裂纹很容易在陶瓷层中萌生和扩展,如果此时相邻的金属层中的柱状晶较大(高度超过31μm),裂纹则能够比较容易地沿着金属层上部的柱状晶边界扩展,但金属层中、下部分柱状晶尺寸较小的区域能够阻止裂纹在金属层中进一步扩展,并产生桥联;当遇到结合较弱的层界面时,裂纹很容易发生偏转,并沿界面扩展,这会加速表层桥联的金属层的断裂。
     对比NiCoCrAl单层薄板和NiCoCrAl/YSZ微层板的拉伸性能发现,在室温、700℃和1000℃时,微层板的强度高于单层金属薄板的,而且,测试温度越高,微层板保持强度的能力越突出。同时发现,微层板的密度远低于NiCoCrAl单层板的,因而,其比强度也要远高于后者的。制备态时,金属层厚度越大,微层板的强度越低,但室温断裂韧性越高,其中金属层厚为35μm的微层板的室温断裂韧性甚至高于NiCoCrAl单层板的。经热处理后,微层板和NiCoCrAl单层板的强度均有所提高,但随热处理时间的延长,NiCoCrAl单层板的强度单调增加,而微层板的强度却是先增加而后降低的。
     氧化试验表明,氧很容易通过YSZ层扩散到微层板内部的金属层界面,导致不仅靠近外侧的金属层表面发生氧化,而且板内部的金属层界面也发生氧化;而且,微层板中金属层厚度较小时,由于所含的Al量也较少,金属层的表面更不容易形成稳定的Al_2O_3膜。因此,所含层数越多,金属层厚度越小,微层板的抗氧化能力越差。较多的层数和较低的层厚,也导致了这些微层板的抗氧化性能要弱于NiCoCrAl单层薄板的。
     总的来说,在本文所研究的层厚范围内,金属层厚度越大,微层板的室温断裂韧性和高温抗氧化性越好,但密度和高温强度越小。因此,NiCoCrAl/YSZ微层板的金属层厚度应根据实际的使用要求来调节。
Metal/ceramic laminates are increasingly being considered for high temperature applications in the aerospace industry. These composites have been chosen for development because they show superior high temperature creep resistance compared to metals, simultaneously having better toughness and structural integrity compared to monolithic ceramics. In general, the goal of the investigation on metal/ceramic laminates was to improve the poor intrinsic toughness of ceramic matrix. In this study, metal/ceramic composites in which NiCoCrAl alloy matrix was reinforced with modest volume fractions of YSZ ceramic were fabricated by EB-PVD, and their microstructures and properties were also studied by modern analysis and test methods. The main contents of the study include: fabrication of NiCoCrAl/YSZ microlaminates, influence of metal-layer thickness in microlaminates on their recrystallization behaviors, effect of operating technical parameters and laminated structures on microstructures and mechanical properties, influence of annealing treatment on mechanical properties of microlaminates, analysis of residual stress, nano-indentation properties and fracture process for the microlaminates, as well as comparison of tensile properties and oxidation resistance between the microlaminates and a monolithic NiCoCrAl foil, and so on.
     The results showed that there were flat and distinct interfaces between metal and ceramic layers of the microlaminates, and that the relationship between the microstructures of layers and the substrate temperature was consistent with classic model established by Movchen et al. As the substrate temperature was 900℃, NiCoCrAl layers were found to consist ofγphase and have a relatively large equiaxed grain structure; and YSZ layers had a small columnar grain structure, being composed of tetragonal phase. When the substrate temperature was decreased to 650℃, both NiCoCrAl and YSZ layers showed an equiaxed structure during the early stages of nucleation, and then the columnar structure became more evident with increasing coating thickness; at the same time, a few ofγ′phase separated out in NiCoCrAl layers. Whatever the substrate temperature was 900℃or 650℃, grains of EB-PVD NiCoCrAl and YSZ film formed clusters in which there was a relatively dense grain structure; however there were gaps or holes among grain clusters. As a result, cracks could easily develop along weak intercolumnar interfaces and caused film failure between columns. However, the smaller size scales resulted from laminated structures could increase the films cracking stresses by limiting the size of the flaw sizes. It was also found that the higher substrate temperature was propitious to improve the strength of the microlaminates, and that the coarser substrate could decrease their strength at room temperature and 700℃, but improve their strength at 1000℃.
     After annealing at 1050℃, recrystallization were observed in the NiCoCrAl layers produced by EB-PVD, and their columnar structures changed into equiaxed structures, which was beneficial to improve the strength of foils. The thermal stresses along the thickness direction of the NiCoCrAl/YSZ multiscalar microlaminates were studied by finite element analysis and numerical calculation method; and the microstructures of the ductile phase layers with different thicknesses were observed. The results showed, with the thickness of ductile phase layer increased, its thermal stress decreased, then, the rate of nucleation and growth of recrystallization decreased. As a result, over 20μm thick metal layers were relatively difficult to be recrystallized; however, the metal layers with thickness less than 13μm were rescrystallize, and the size of their recrystal grains increased with the increasing layer-thickness.
     The crack growth on cross-sections of as-deposited microlaminate samples was observed. It was found that the lower strength of YSZ layers made cracks nucleate and grow easily in them. If the adjacent NiCoCrAl layers under the YSZ layers was relatively thick, and had relatively evident columnar structure, cracks would keep up propagate along the boundaries between columnar grains of NiCoCrAl layers, but be blunt by the residual part of metal layers whose thickness less than 31μm, then a zone of bridging ligaments would be generated. Moreover, interfacial debonding was also been observed.
     Comparing with the monolithic NiCoCrAl foil, NiCoCrAl/YSZ microlaminates displayed greater tensile strengths; and with increasing temperature, they showed the better capability to retain strength. When metal layers were relatively thick, the as-deposited microlaminate had relatively low tensile strength, but relatively great fracture toughness. After annealing at 1050℃, the strengths of both the microlaminates and the monolithic NiCoCrAl foil were improved. And, with increasing annealing time, the strengths of the microlaminates increased at first, and then began to decrease; however, the strength of the monolithic NiCoCrAl foil increased uniformly.
     The oxidation behaviors of monolithic NiCoCrAl foil and NiCoCrAl/YSZ microlaminates were investigated at 1000℃in air. The microlaminates showed relatively weak oxidation resistance than monolithic NiCoCrAl foil. The reasons were analyzed. On one hand, oxygen could easily diffuse along YSZ layers to the interface of all metal layers in microlaminates, then the surface of metal phase be increased greatly, leading to an increasing oxidation rate. On the other hand, due to the relatively small thickness, Al content of metal layers in microlaminates was relatively low; as a result, stable Al2O3 oxide scales were more difficult to form on their surface. In a word, the more number and greater thickness of metal layers lead to the weaker oxidation resistances of microlaminates.
     In conclusion, when the layer-thickness being between 1.6μm and 35μm, the thicker metal layers were, the better the room-temperature fracture toughness and oxidation resistance of the microlaminate were, but the lower the high-temperature strength and density of microlaminate was. So, the metal-layer thicknesses of NiCoCrAl/YSZ microlaminates should be tailored according to application needs.
引文
1庾晋,周洁.空天飞机雄霸天下.金属世界. 2003, 3: 14~15
    2陈宇,张玢,徐立国.漫漫太空路——美空天飞机风雨40年.国防技术基础. 2003, 2: 37~39
    3曹义,程海峰,肖加余,李永清.美国金属热防护系统研究进展.宇航材料工艺. 2003, 3: 9~13
    4姚草根,吕宏军,贾新潮,张绪虎,王琪.金属热防护系统材料与结构研究进展.宇航材料工艺. 2005, 2: 10~13
    5陈亚莉.来航空发动机涡轮叶片用材的最新形式——微叠层复合材料.航空工程与维修. 2001, 5: 10~12
    6 D. Van Heerden, A.J. Gavens, T. Foecke, T.P. Weihs. Evaluation of Vapor Deposited Nb/Nb5Si3 Microlaminates. Materials Science and Engineering A. 1999, 261: 212~216
    7易剑,赫晓东,李垚.微叠层材料及其制备工艺研究进展.宇航材料工艺. 2001, 5: 16~22
    8郑丽娟,赵玉涛,程晓农,陈志刚.仿生叠层复合材料的制备及层间性能研究.机械工程材料. 2003, 27(7): 35~38
    9 J. D. Curry. Mechanical Properties of Mother of Pearl in Tension. Proc R Soclond. 1977, 196B: 443~463
    10 F. Bunshanr, Nimmagaddar, J. Doeerh. Structure and Property Relationships in microlaminate Ni-Cu and Fe-Cu Condensates. Thin Solid Films, 1980, 72(2): 261~275
    11陈燕俊等.层叠复合材料加工技术进展.材料科学与工程. 2002, 20(1): 140~142
    12 W. H. Soe. Thin Film-Stress and Mechanical Properties, VII. Mater. Res. Soc. Symp Proc. 1998, 5: 299~302
    13 S. Menzes and D. P. Anderson. Wavelength-Property Correlation in Electrodeposited Ultra-Structured Cu-Ni Multilayers. J. Electrochem. Soc. 1990, 137(2): 440~444
    14 W. J. Clegg, K. Kendall, N. M. Alford. A Simple Way to Make Tough Ceramics. Nature. 1990, 347(10): 455~457
    15 W. J. Clegg. The Fabricating and Failure of Laminar Ceramic Composites. Acta. Metal. 1992, 40: 3085~3093
    16 B. David. Marshall. Design of High-Toughness Laminar Zirconia Composites. Ceramic Bull. 1992, 71(6): 969~973
    17 B. David. Marshall, Joseph J. Ratto, et al. Enhanced Fracture Toughness in Lavered Microcomposites of Ce-Zro2 and Al2O3. J Am Ceram Soc. 1991, 74(12): 2979~2987
    18杨辉,江仲华,葛曼珍.层状复合氧化铝陶瓷.第四届全国高技书陶瓷学术年会论文集. 1992, 9: 49~53
    19葛曼珍,杨辉,阚红华等.层状复合陶瓷及陶瓷增韧.北京:化工出版社. 1995, 2(6): 536~540
    20 L. Vandeperre, Van Der Biest. Electrophoretic Forming of Laminated Ceramic Composite Tubes. Key Engineering Materials. 1997, 132-136: 2013~2016
    21陈蓓,丁培道.强界面结合层状陶瓷研究现状及增韧机制.材料导报. 2001, 15(6): 28~32
    22成茵,肖汉宁,李玉平.层状复合陶瓷增韧机理和制备工艺的研究.陶瓷学报. 2003, 24: 111~115
    23 Y. El-Shaer, B. Derby. Modelling of Curve Behaviour in Ceramic-Metal Laminates. Mater. Sc.I & Eng. A. 2004, 365: 196~201
    24 K. Pateras, S. J. Howard and T. W. Clyne. The Contribution of Bridging Ligament Rupture to Energy Absorption During Fracture of Metal-Ceramic Laminates. Key Engineering Materials. 1997, 127-131:1127~1135
    25罗永明,潘伟,陈健,郑仕远. Sic/W层状复合材料力学性能与显微结构的研究.材料导报. 2000, 14(5): 49~54
    26 Zheng Chen, J. J. Mecholsky. Toughening by Metallic Lamina in Nickel / Alumina Composites. J. Am. Ceram. Soc. 1993,76(5): 1258~1264
    27 Zheng Chen, J. J. Mecholsky. Control of Strength and Toughness of Ceramic / Metal Laminates Using Interface Design. J. Mater. Res. 1993, 8(9): 2362~2369
    28 Zheng Chen, J. J. Mecholsky. Effect of Interface Design on High Temperature Failure of Laminated Composites. J. Mater. Res. 1996, 11(8): 2035~2041
    29袁广江,罗永明. Sic基层状复合材料界面层的选择.硅酸盐学报. 2001, 29(3): 226~231
    30 D. Tench, J. White. Enhanced Tensile Strength for Electrodeposited Nickel-Copper Multiplayer Composites. Metall. Mater. Trans. 1984,15A(11): 2039~2040
    31 S. L. Lehoczky. Strength Enhancement in Thin-Layered Al-Cu Laminates. J Appl Phys. 1978, 49: 5479~5485
    32 A. Misra, J. P. Hirth, R. G. Hoagland. Length-Scale-Dependent Deformation Mechanisms in Incoherent Metallic Multilayered Composites. Acta Materialia. 2005, 53: 4817~4824
    33 M. Vill, D. P. Adams, et al. Mechanical Properties of Tough Multiscalar Microlaminates. Acta Metal. Mater. 1995, 43: 427~437
    34 H. Chung, M. H. Jilavi, T. P. Duffey. Nanocrystalline Nbal3-Al Multilayer Thin Films Deposited by Excimer Laser Ablation. Scripta Materialia. 1998, 38(3): 429~435
    35 D. R. Bloyer, K. T. Venkateswara Rao, R. O. Ritchie. Laminated Nb/Nb3Al Composites: Effect of Layer Thickness on Fatigue and Fracture Behavior. Materials Science and Engineering A. 1997, 239-240: 393~398
    36 Yao Li , Jiupeng Zhao, Gang Zeng, Chunlong Guan, Xiaodong He. Ni/Ni3Al Microlaminate Composite Produced by EB-PVD and the Mechanical Properties. Materials Letters. 2004, 58: 1629~ 1633
    37 W. H. Xu, X. K. Meng, C. S. Yuan, A. H. W. Ngan, K. L. Wang, Z. G. Liu. The Synthesis and Mechanical Property Evaluation of Ni/Ni-Al Microlaminates. Materials Letters. 2000, 46: 303~308
    38 D. R. Bloyer, K. T. Venkateswara Rao, R. O. Ritchie. Resistance-Curve Toughening in Ductile/Brittle Layered Structures:Behavior in Nb/Nb3Al Laminates. Mater Sci Eng A. 1996, 216: 80~90
    39 J. Kajuch, J. Short, J. J. Lewandowski. Deformation and Fracture Behavior of Nb in Nb5Si3/Nb Laminates and its Effect on Laminate Toughness. Acta Metall Mater. 1995, 43: 1955~1967
    40 D. W. Sproul. Physical Vapor Deposition Tool Coatings. Surface and Coatings Technology. 1996, 81(1): 1~7
    41吴大维.硬质薄膜材料的最新发展及应用.真空. 2003, (6):1~4
    42赵海波.国内外切削刀具涂层技术发展综述.工具技术. 2002, 36(2): 3~5
    43 M. Shinn, L. Hultman, S. A. Barnett. Growth, Structure, and Microhardness of Epitaxial Ti/Nb Superlattices. J. Mater. Res. 1992, 7: 901~907
    44 X. Q. Cao, R. Vassen and D. Stoever. Ceramic Materials for Thermal Barrier Coatings. J. Eur. Ceram. Soc. 2004, 24: 1~10.
    45 F. Cernuschi, P. Bianchi, M. Leoni and P. Scardi. Thermal Diffusivity/ Microstructure Relationship in Y-PSZ Thermal Barrier Coatings. J. Therm. SprayTechnol. 1999, 8(1): 102~109
    46 R. Vassen, F. Tietz, G. Kerkhof and D. Stoever. New Materials for Advanced Thermal Barrier Coatings. In Proceedings of the 6th Liege Conference on Materials for Advanced Power Engineering. Forschungszentrum Juelich Gmbh, Juelich, Deutschland. 1998, Pp. 1627~1635
    47 M. Tamura, M. Takahashi, J. Ishii, K. Suzuki, M. Sato, and K. Shimomura. Multilayered Thermal Barrier Coating for Land-Based Gas Turbines. J. Therm. Spray Technol. 1999, 8(1): 68~72
    48 M. Takahashi, Y. Itoh and M. Miyazaki. Thermal Barrier Coatings Design for Gas Turbine. In Proceedings of 14th International Thermal Spraying (Vol 1), Ed. A. Ohmori. High Temperature Society of Japan, Kobe, Japan, 1995, Pp. 83~88
    49 R. Vassen, M. Dietrich, H. Lehmann, X. Cao, G. Pracht, F. Tietz, et al., Development of Oxide Ceramics for an Application as TBC. Mater. Sci. Eng. Technol. 2001, 32(8): 673~677
    50 J. Wilden and A. Wank. Application Study on Ceria Based Thermal Barrier Coatings. Mater. Sci. Eng. Technol. 2001, 32(8), 654~659
    51 X. Cao, R. Vassen, F. Tietz et al. New Double-Ceramic-Layer Thermal Barrier Coatings Based on Zirconia-Rare Earth Composite Oxides. Journal of the European Ceramic Society. 2006, 26:247~251
    52 P. Z. Cai, D. J. Green and G. L. Messing. Layered Materials for Structural Application. Material.Research.Society. 1996, 434: 93~100
    53 Shengkai Gong, Dongbo Zhang, Huibin Xua, Yafang Hana. Thermal Barrier Coatings With Two Layer Bond Coat on Intermetallic Compound Ni3Al Based Alloy. Intermetallics. 2005, 13: 295~299
    54 G. N. Howatt, R. G. Breekenzidge and J. M. Brownlow. Fabrieation of Thin Ceramic Sheets for Capacitors. J Am Ceram Soc. 1947. 30(1): 237~245
    55 G. S. Was, T. Foecke. Deformation and Fracture in Microlaminates. Thin Solid Film. 1996, 286: 1~31
    56 J. D. Embury, J. P. Hirth. On Dislocation Storage and the Mechanical Response of Fine Scale Microstructures. Acta Metal Mater. 1994, 42(6): 2051~2056
    57 W. D. Nix. Mechanical Properties of Thin Films. Metal Trans. 1989, 20A(9): 2217~2245
    58 D. J. Srolovitz, S. M. Yalisove, J. C. Bilello. Design of Multiscalar MetallicMultiplayer Composites for High Strength, High Toughness, and Low CTE Mismatch. Metall Mater Trans. 1995, 26A(7): 1805~1813
    59 T. S. Kuan, M. Murakmi. Low Temperature Strain Behavior of Pb Thin Films on a Substrate. Metall Trans. 1982, 13A: 383 ~391
    60 J. S. Koehler. Attempt to Design a Strong Solid. Phys.Rev. B. 1970, 2(2): 547~551
    61 X. Chu, Scott A. Barnett. Model of Superlattice Yield Stress and Hardness Enhancements. J. Appl. Phys. 1995, 77(9): 4403~4411
    62 M. Shinn, S. A. Barnett. Effect of Superlattice Layer Elastic Moduli on Hardness. Appl. Phys. Lett. 1994, 64(1): 3~61
    63马林斯基.新型电子束物理气相沉积设备.新工艺?新技术?新设备. 1998, 2: 37~38
    64 R. A. Miller. Thermal Barrier Coatings for Aircraft Engines: History and Directions. J Thermal Spray Tech. 1997, 6(1): 35~42.
    65 A. Steven. High-Tech Coatings for Turbine Blades. Mechanical Engineering. 1995, 117(10): 66~69.
    66刘景顺,曾岗,李明伟,杨森,郭洪飞.电子束物理气相沉积(EB-PVD)技术研究及应用进展.材料导报. 2007, 21: 247~255
    67 D. E. Wolfe, J. Singh. Titanium Carbide Coatings Deposited by Reactive Ion Beam-Assisted, Electron Beam-Physical Vapor Deposition. Surface and Coating Technology. 2000, 124: 142~153
    68 J. F. Groves. Directed Vapor Deposition. University of Virginal Doctor Thesis. 1998: 51~65
    69 D. T. Queheillalt, D. D. Hass, H. N. G. Wadley. Electron-Beam Directed Vapor Deposition of Multifunctional Structures for Electrochemical Storage. SPIE. 2002, 4698: 201~211
    70 R. J. Hecht, G. W. Goward and R. C. Elam. High Temperature Nicocraly Coatings. United States Patent. No. 3928026, 1975.
    71雷奕,王英敏,董闯等. Zr65Al7.5Ni10Cu17.5块状非晶晶化过程的电镜研究.中国有色金属学报. 2002,12(6):1140~1141
    72唐兆麟,王福会等. Cr对Tial金属间化合物高温氧化性能的影响.金属学报.1997, 33(10):1032~1033.
    73黄乾尧,李汉康.高温合金.冶金工业出版社. 2000: 47~65
    74增晓雁,吴懿平.表面工程学.机械工业出版社. 2001:216~220
    75张永康,孔德军,冯爱新,鲁金忠,葛涛.涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统.物理学报. 2006, 55(11): 6008~6013.
    76顾培夫.薄膜技术.浙江大学出版社. 1990:22~60
    77杨邦朝,王文生.薄膜物理与技术.电子科技大学出版社. 1997:65~71
    78郑伟涛.薄膜材料与薄膜技术.化学工业出版社. 2004:47~166
    79 B. A. Movchen and A. V. Demchishin. Study of Structureand Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide, Fiz. Metal. Metalloved. 1969, 28: 83~90
    80 R. F. Bunshah. Structure/Property Relationships in Evaporated Thick Films and Bulk Coatings. J. Vac. Sci. Tech. A. 1974, 11: 633~638
    81 J. A. Thornton. Influence of Substrate Temperature and Deposition Rate in Structure of Thick Sputtered Cu Coatinmgs. J. Vac. Sci. Tech. A. 1975, 12: 830~835
    82唐伟忠.薄膜材料制备原理、技术及应用.冶金工业出版社. 1998: 105~143
    83 C. Mitterer, P.H. Mayrhofer, J. Musil. Thermal Stability of PVD Hard Coatings. Vacuum. 2003, 71: 279~284
    84 C. S. Lin, C. Y. Lee, C. F. Chang, C. H. Chang. Annealing Behavior of Electrodeposited Ni-Tio2 Composite Coatings. Surface & Coatings Technology. 2006, 200: 3690~3697
    85 P. H. Mayrhofer, H. Willmann, C. Mitterer. Recrystallization and Grain Growth of Nanocomposite Ti–B–N Coatings. Thin Solid Films. 2003, 440: 174~179
    86 V. Vovk , G. Schmitz, A. Hutten, S. Heitmann. Mismatch-induced Recrystallization of Giant Magneto-Resistance (GMR) Multilayer Systems. Acta Materialia. 2007, 55: 3033~3047
    87 Xiaofang Bi, Shengquan Ou, Shengkai Gong, Huibin Xu. Nano-Crystallization and Magnetic Properties in the Highly Resistive Fe-Si-Zr-O Films Prepared by EB-PVD. Materials Science and Engineering A. 2003, 344: 74~78.
    88 X. D. He, Y. Xin, M. W. Li, Y. Sun. Microstructure and Mechanical Properties of ODS Ni-Based Superalloy Foil Produced by EB-PVD. J Alloy Compd. 2009, 467: 347~350.
    89 D. E. Wolfe, J. Singh, R. A. Miller. Tailored Microstructure of EB-PVD 8YSZ Thermal Barrier Coatings With Low Thermal Conductivity and High Thermal Reflectivity for Turbine Application. Surf Coat Tech. 2005, 190: 132~142
    90 C. H. Shang, D. Van Heerden, A. J. Gavens and T. P. Weihs. An X-Ray Study ofResidual Stresses and Bending Stresses in Free-Standing Nb/Nb5si3 Microlaminates, Acta Mater. 2000, 48: 3533~3543.
    91张定铨.材料中残余应力的X射线衍射分析和作用.西安交通大学出版社. 1999: 283~290
    92 H. W. Ng, Z. Gan. Finite Element Analysis Technique for Predicting As-Sprayed Residual Stresses Generated by the Plasma Spray Coating Process. Finite Elements in Analysis and Design. 2005, 41: 1235~1254.
    93 Sujanto Widjaja, Andi M. Limarga, Tick Hon Yip. Modeling of Residual Stresses in a Plasma-Sprayed Zirconia / Alumina Functionally Graded-thermal Barrier Coating. Thin Solid Films. 2003, 434: 216~227.
    94 Byung-Koog Jang, Hideaki Matsubara. Influence of Porosity on Hardness and Young’s Modulus of Nanoporous EB-PVD Tbcs by Nanoindentation. Materials Letters. 2005, 59: 3462~3466
    95 E. Lugscheider, K. Bobzin, S. Barwulf, A. Etzkorn. Mechanical Properties of EB-PVD Thermal Barrier Coatings by Nanoindentation. Surface and Coatings Technology. 2001, 138: 9~13
    96马李,赫晓东,李垚,滕敏.叠层材料界面性能的研究进展.宇航材料工艺. 2005, 6: 1~6
    97谭焱,杨辉,葛曼珍.层状复合陶瓷制备技术与界面特性.陶瓷学报. 1997, 18 (2): 113~117
    98李美姮,孙晓峰,宫声凯等. EB-PVD热障涂层高温氧化过程中的显微结构和相分析.中国腐蚀与防护学报. 2002, 22(2): 105~111
    99 D. Wolfe, J. Singh. Functionally Gradient Ceramic / Metallic Coatings for Gas Turbine Components by High-Energy Beams for High-Temperature Applications. Journal of Materials Science. 1998, 33: 3677~3692
    100 H. Shen, G. N. Chen, G. C. Li.The Plastic Instability Behavior of Laser-Textured Steel Sheet. Materials Science and Engineering A. 1996, (A219/1-2): 156~161
    101陈光南.毛化轧辊的新方法及其应用.钢铁. 1997, 32(6): 65~66
    102 Byung-Koog Jang, Hideaki Matsubara. Surface Roughness and Microstructure of Yttria Stabilized Zirconia EB-PVD Coatings. Surface & Coatings Technology. 2006, 200: 4594~ 4600
    103李晓海.大尺寸Ni基高温合金薄板的研制及性能研究.哈尔滨工业大学博士论文. 2006: 74~87
    104刘联宝.陶瓷金属封接技术指南.国防工业出版社. 1990: 16~34
    105王全胜,王富耻,马壮,吕广庶.铝基厚梯度热障涂层制备工艺及性能研究.中国表面工程. 2004, 4: 35~41.
    106王德朋,于朝霞,王旭东,梁仕军,张文建,冯宗杰,穆洪彬.喷涂距离对热障涂层拉伸强度的影响.热加工工艺. 2007, 36(7): 46~49.
    107 Z. L. Dong, K. A. Khor, Y. W. Gu. Microstructure Formation in Plasma-Sprayed Functionally Graded Nicocraly/Yttria-Stabilized Zirconia Coatings. Surface and Coatings Technology. 1999, 114: 181~186.
    108 R. A. Miller. Current Status of Thermal Barrier Coatings-an Overview. Sur. Coat.Technol. 1987, 30: 1~11
    109 R. A. Miller.Thermal Barrier Coatings for Aircraft Engines: History and Directions. Thermal Spray Technol. 1997, 6(1): 4~35
    110 A. S. James and A. Matthews. Developments in R. F. Plasma-Assisted Physical Vapor Deposition Partially Yttria-Stabilized Zirconia Thermal Barrier Coatings. Surf. Coat.T Echnol. 1990, 43/44: 436~444
    111 M. Andtitschky and P. Alpuim. Strength Measurements of Thin Brittle Zro2 Coatings Produced by Magnetron Sputtering on Steel Substrates. Vacuum. 1997, 48(5): 417~422.
    112关春龙. EB-PVD制备大尺寸Ni-Cr-Al合金薄板组织及性能研究.哈尔滨工业大学博士论文. 2005: 51~65
    113 G. M. Pharr, W. C. Oliver, F. R. Brotzen. On the Generality of the Relationship among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation. J. Mater. Res. 1992, (7): 613~617
    114 A. E. Giannakopoulos and S. Suresh. Determination of Elastoplastic Properties by Instrumented Sharp Indentation. Scripta Mater. 1999, (40): 1191~1198
    115 S. Suresh and A. E. Giannakopoulos. A New Method for Estimating Residual Stresses by Instrumented Sharp Indentation. Acta Mater. 1998, (46) 5755~5767
    116 J. D. Curry. Mechanical Properties of Mother of Pearl in Tension. Proc R Soclond. 1977, 196B: 443~463
    117 X. D. He, X. Li, Y. Sun. Journal of Magnetism and Magnetic Materials. J Magn Magn Mater. 2008, 320: 221-217. 2008, 320: 217~221
    118胡庚祥,钱苗根.金属学.上海科技出版社. 1980: 336~337
    119 M. J. Marques, A. M. Dias, P. Gergaud and J. L. Lebrun. A MethodologyDevelopment for the Study of Near Surface Stress Gradients. Mater Sci & Eng A. 2000, 287 (1-2): 78~86
    120范雄.金属X射线学.机械工业出版社. 1988: 15~18
    121 Byung-Koog Jang, Hideaki Matsubara. Hardness and Young’s Modulus of Nanoporous EB-PVD YSZ Coatings by Nanoindentation. Journal of Alloys and Compounds. 2005, 402: 237~241
    122 James C. Wang. Young's Modulus of Porous Materials. Journal of Materials Science. 1984, 19: 801~808
    123魏大盛,王延荣,李伟.预置裂纹定向凝固高温合金叶片的断裂特征分析.推进技术. 2008, 29(1): 89-92
    124 J. M. Barsom and J. V. Pellegrino. Relationship Between KIC Plane Strain Tensile Ductility and Microscopic Mode of Fracture. Engng Fract Mech. 1973, 5: 209~221.
    125 I. A. Polonsky, T. P. Chang, L. M. Keer and W. D. Sproul. A Study of Rolling-Contact Fatigue of Bearing Steel Coated With Physical Vapor Deposition Tin Films. Wear. 1998, 215: 191~204.
    126 S. Ulrich, C. Ziebert and M. Stqber. Correlation Between Constitution, Properties and Machining Performance of Tin/Zrn Multilayers. Surf Coat Technol. 2004, 188-189: 331~337.
    127 Byung-Koog Jang. Thermal Conductivity of Nanoporous Zro2-4mol%Y2O3 Multilayer Coatings Fabricated by EB-PVD. Surface & Coatings Technology. 2008, 202: 1568–1573
    128 P. Agrawal and C. T. Sun. Fracture in Metal-Ceramic Composites, Compos Sci Technol. 2004, 64: 1167~1178
    129 B. Wang, C. Sun, G. Gong, R.F. Huang. Oxidation Behavior of the Alloy IC-6 and Protective Coatings. Corrosion Science.2004, 46: 519~528
    130 E. Y. Lee, R. R. Biedrman and R. D. Sisson. Diffusional Interactions and Reactions Between A Partially Stabilized Zirconia Thermal Barrier Coating and the Nicraly Bond Coat. Mater Sci Eng. 1989, A121: 467~473
    131 H. Svensson, J. Angenete and K. Stiller. Microstructure of Oxide Scales on Aluminide Diffusion Coatings after Short Time Oxidation at 1050℃. Surfaces and Coatings Technology. 2004, (177-178): 152~157
    132 C. T. Liu, X. F. Sun, H. R. Guan and Z. Q. Hu. Effect of Rhenium Addition to a Nickel-Base Single Crystal Superalloy on Isothermal Oxidation of the AluminideCoating. Surfaces and Coatings Technology. 2005, (194): 111~118
    133李明伟,朱景川,尹钟大,曾岗, PSZ-Ni复合材料中Ni氧化行为的TG分析.稀有金属材料与工程. 2003, 32 (3): 53~58
    134 A. Bennett. Properties of Thermal Barrier Coatings. Mater.Sci.Technol. 1986, 2(3): 257~261
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.