基于Multigen Creator/Vega的大型平移式喷灌机虚拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型平移式喷灌机虚拟试验研究是“十一五”国家科技支撑计划课题——农业装备虚拟试验技术研究(2006BAD11A1706)的研究内容之一。传统的大型喷灌机试验,不仅需要符合试验要求的场地、水源和电源,而且需要安装、调试喷灌设备,经过重复多次喷洒、测量,最后计算试验数据,存在费时、费水、费力、费钱等问题。本文研发的基于Multigen Creator和Vega的大型平移式喷灌机虚拟试验系统,通过建立和优化喷灌数学模型,利用虚拟现实技术,在计算机上进行大型平移式喷灌机喷灌仿真试验,不仅克服了传统喷灌试验的不足,而且减少资源的浪费,降低成本,提高效率,节水环保。
     本文的主要工作如下:
     1.概述了大型平移式喷灌机的喷灌试验技术的国内外研究现状和发展趋势,确定了基于Multigen Creator和Vega的大型平移式喷灌机虚拟试验系统的研发总体方案和技术路线。
     2.研究了虚拟现实的建模和渲染方法,建立了大型平移式喷灌机的三维立体模型;创建了LOD地形细节层次,利用Polymesh算法对地形模型进行优化处理,通过纹理贴建立逼真的喷灌机虚拟试验场景。
     3.在研究分析大型平移式喷灌机的工作原理、结构参数、运动参数等与喷灌均匀度相关的参数的基础上,建立了一种计算大型平移式喷灌机的单个喷头喷灌强度的数学模型。
     4.喷灌均匀度是衡量喷灌质量好坏的关键指标之一,本文提出了一种基于虚拟试验技术的大型平移式喷灌机喷灌均匀度的计算方法,开发了喷灌机喷灌均匀度的参数化模型接口。
     5.基于粒子系统的相关理论,定义了喷灌机水滴的数据结构体,设置了喷灌机喷头水滴的产生、生长和消失的条件,通过调用OpenGL的图形库函数和回调函数在虚拟环境中展现喷灌机的喷灌效果,用户可以通过计算机与虚拟环境中的个体进行自然交互,逼真的观察、体验虚拟试验的过程。
     6.通过分析大型平移式喷灌机的喷洒过程,建立了大型平移式喷灌机在无风条件下的水量分布模型。以Microsoft Visual C++6.0为平台开发了大型平移式喷灌机虚拟试验系统,并以PY10型喷头为例,对该虚拟试验系统进行了多次仿真验证。
     本文的主要创新点如下:
     1.提出基于虚拟试验系统的大型平移式喷灌机的喷灌均匀度计算机辅助系统,用该计算机辅助系统可以计算出不同喷头间距,不同喷嘴直径下的大型平移式喷灌机的喷灌均匀度。
     2.进一步改进了大型平移式喷灌机喷灌强度的计算模型,对开发喷灌均匀度的参数化模型接口具有重要意义。
This project was supported by“11th Five-Year”National Science andTechnology Support Programme project“agriculture equipment virtual testtechnology (Project’s number:2006BAD11A1706). Traditional LargeIrrigation System Test need not only site,water, and power fitting for tesrequirements but also installating, debugging the irrigation equipment. The tesdata is finally calculated through measuring the spraying depth repeatedly. Thismethod is difficult,water-wasting and time-consuming etc.Lateral movesprinkler irrigation’s virtual experiment system based on Multigen Creator andVega,which is simulated in computer by virtual reality technology, has createdand optimized mathematical model.This simulating experiment not onlyovercame the deficiency of traditional irrigation test and save resources, reducethe cost, improve efficiency and protect water environment.
     The main work of this paper is as follows:
     1. The present research progress of lateral move sprinkler irrigation’ssprinkler test technology is reviewed and overall planning and technologyroute of virtual test system about Lateral move sprinkler irrigation based onMultigen Creator and Vega is created in this paper.
     2. The method of establishing and rendering the models in the virtuareality system is researched. The 3D model of lateral move sprinkler irrigationis established. The terrain model is created and optimized using the LODterrain hierarchy and polymesh algorithm.The virtual realistic scene about thesprinkler irrigation is set up by texture maps.
     3. Based on analyzing the lateral move sprinkler irrigation’s workingprinciple, structural parameters, motion parameters and so on related toirrigation uniformity, a mathematical model for calculating the sprinklerintensity of a single sprayer is established.
     4. Sprinkler uniformity(Cu) is an important indicator to evaluate thequality of sprinkler irrigation.A algorithm of sprinkler uniformity based onvirtual experiment technology is brought out and the interface of sprinkler uniformity machine parametric model is developed.
     5. Data structure of water droplets is defined and the conditions of the sprinkler water droplets’produce, growth and disappearance is installed based on the theory of particle system in this paper. Irrigation of sprinkling machine is shown in the virtual environment by calling the OpenGL graphics library functions and the callback function. Users can observe and know the process of virtual test.What’s more,users can interact with virtual prototyping by computer.
     6. The water distribution model of lateral move sprinkler irrigation in no wind conditions is established through the analysis of irrigation’s working process. With the use of Microsoft Visual C++ 6.0, virtual sprinkler irrigation test system is developed in this paper.For the example of PY10-type nozz -le,many simulating test is done.
     The main innovation of this paper is as follows:
     1. It is the first time to develop a computer-aided system of sprinkler irrigation aiming at uniformity, This system used to calculate the sprinkler irrigation uniformity under conditions of different nozzle distance and different nozzle diameter.
     2. the calculation model of sprinkler irrigation’s sprinkler intensity is more improved in this paper which plays an important in exploiting parametric model interfaces of sprinkler uniformity.
引文
柴春岭,杨路华,脱云飞等.可调式微喷头出水口流道形式对喷洒水性能影响的试验研究[J].农业工程学报,2005,21(3):17-20.
    仇小鹏,杨平利等.仿真软件Vega中的路径与导航器模块[J].计算机仿真,2006, 23(12):201-204.
    代丽红,尹文生等.OpenGL在Vega开发环境中的应用研究[J].计算机应用与软件,2005,22(7):64-66.
    邓鲁华,郝培业.基于Delphi的喷头喷洒分析软件[J].山东理工大学学报(自然科学版),2003,17(3):33-36.
    邓鲁华,郝培业.六方形摇臂式喷头喷洒效果分析(三)[J].节水灌溉,2003(4),11-14.
    丁纪云,陈利平.基于OpenGL的烟花动态模拟方法的研究与实现[J].计算机工程, 2002, 28(4): 240-275.
    龚卓荣.Vega程序设计[M].北京:国防工业出版社,2002.
    郭佳佳.基于粒子系统的自然景物模拟研究[J].电脑知识与技术,2009(4):1006-1008.
    郭元裕.农田水利学[M].北京:中国水利水电出版社,1995.
    韩文霆.喷灌均匀系数的三次样条两次插值计算方法[J].农业机械学报,2008,39(10):134-139.
    韩文霆.变量喷洒可控域精确灌溉喷头及喷灌技术研究[D].西北农林科技大学,2003.
    杭燚,王晓锋等.基于MultiGen Creator/Vega的虚拟现实仿真系统[J].弹箭与制导学报,2007,27(1):339-342.
    和平鸽工作室.OpenGL高级编程与可视化系统开发(高级编程篇)[M].北京:中国水利水电出版社,2003.
    候永胜,多喷头轻小型移动式喷灌机组优化配套研究[D].中国农业机械化科学研究院,2007.
    胡少军,何东健等. OpenGL与Creator/Vega结合的渠系仿真优化设计[J].系统仿真学报,2007,19(5):1157-1160.
    黄修桥,李英能等.节水灌溉技术体系与发展对策的研究[J].农业工程学报,1999,15(1):118-123.
    黄修桥,廖永诚等.有风条件下喷灌系统组合均匀度的计算理论与方法研究[J].灌溉排水,1995,14(1):12-18.
    姜士湖,闫相桢.虚拟样机技术及其在国内的应用前景[J].机械,2003,30(2):4-9.
    焦培刚,周以齐等.基于Creator可视化仿真建模优化方法的探讨[J].机电产品开发与创新,2006,19(2):86-88.
    李刚.虚拟试验系统运行支撑软件的框架研究[D].河北:华北电力大学,2006:1-6.
    李久生,喷灌均匀系数对土壤水分空间分布及作物产量影响的研究现状[J].农业工程学报,1998,14(2):132-137.
    李久生,饶敏杰.喷灌均匀系数对土壤水分及冬小麦产量影响的试验研究[J].水利学报,2000(1):9-14.
    李久生.喷灌均匀系数对作物产量影响的模拟研究[J].农业工程学报,1996,12(4):102-107.
    李小平.喷灌系统水量分布均匀度研究[D].武汉大学,2005.
    李勇,曾志新,叶茂等.虚拟样机技术在小型农用装载机设计中的应用[J].农业工程学,2004,20(5):134-137.
    刘瑞玲.基于Multigen Creator/Vega虚拟现实的研究[D].北京交通大学,2006.
    刘贤喜.机械系统虚拟样机仿真软件的实用化研究[D].中国农业大学,2001.
    [美]Edward Angel著,段菲译.OpenGL编程基础(第三版).清华大学出版社,2008.
    欧萍.基于MultiGen Creator的地形建模技术研究[D].贵州大学,2007.
    裴二荣,柴金城.喷嘴水力性能分析及设计[J].排灌机械,2004,(5):29-31.
    裴毅,龙志军等.虚拟原型技术在离心泵设计中的应用研究[J].湖南农机,2004(06):19,22.
    《喷灌工程设计手册》编写组编.喷灌工程设计手册[M].水利电力出版社,1989.
    谭淑婷,沈晓峰.基于Vega的机载SAR场景仿真[J].现代电子技术,2008(13):58-60.
    汤跃,袁寿其等.喷灌喷头水量分布特性自动测试系统[J].农业机械学报,2006,37(6):69-72.
    脱云飞,杨路华,郭涛,等.圆锥形喷嘴水头损失的计算公式与试验研究[J].节
    水灌溉,2005,(4):14-15.
    汪志农,冯浩.节水灌溉管理决策专家系统[M].黄河水利出版社,2001.
    王波雷,马孝义等.基于Surfer软件的喷灌水量分布均匀性研究[J].人民黄河,2008,30(3):62-63.
    王乘,周均清等.Creator可视化仿真建模技术[M].武汉:华中科技大学出版社,2005.
    王文元,杨路华.微喷头布置形式对喷洒均匀度的影响[J].灌溉排水,1994,13(2):11-13.
    王晓娟.基于粒子系统动态烟花的模拟[J].青海大学学报(自然科学版),2009,27 (4):29-32.
    吴恒,欧孝夺,周东.城市环境下粘性土的热力学行为初探[J].广西科学,2003,10(3).
    吴小靖.以均匀度为目标的喷灌工程规划设计计算机辅助设计系统[D].扬州大学,2004.
    郄志红,练继建等.喷灌水量分布的遗传神经网络模拟与组合均匀度计算[J].灌溉排水学报,2003,22(3):61-63.
    谢剑斌,郝建新等.基于粒子系统的雨点和雪花降落模拟生成[J].中国图象图形学报,1999,4(9):734-738.
    邢少葵,伍铁军.基于VC++与OpenGL的飞秒激光加工几何仿真系统的研究[J].机械制造与自动化,2009,38(4):112-115.
    徐成波.卷盘式喷灌机组合均匀度计算软件开发[J].节水灌溉,2001(1):15-17.
    许一飞,许炳华.喷灌机械原理、设计、应用.北京:中国农业机械出版社,1989:38-40.
    严海军,金宏智.圆形喷灌机非旋转喷头流量系数的研究[J].灌溉排水学报,2004,23(2):55-58.
    严海军.基于变量技术的圆形和平移式喷灌机水量分布特性的研究[D].中国农业大学,2004.
    杨方飞,阎楚良等.虚拟样机技术在水泵设计中的应用[J].农业机械学报,2005,36(1):38-41.
    杨丽,李光耀.城市仿真应用工具—Vega软件教程[M].上海:同济大学出版社,2007.
    姚李刚,蒋双双.基于Vega和OpenGL的柔性物体建模[J].微计算机信息,2008,24(12 -3):187-188.
    仪修堂,窦以松等.中心支轴式喷灌机喷头配置方法及其数学模型[J].农业工程学报,2007,23(2):117-121.
    袁寿其,朱兴业等.基于MATLAB全射流喷头组合喷灌计算模拟[J].排灌机械,2008,26(1):47-52.
    曾庆黎,曾文艺.喷灌模型[J].数学的实践与认识,2004,34(4):16-22.
    张会娟,朱瑞祥等.卷管式喷灌机绞盘速度自动控制系统的研究[J].农机化研究,2007(1):136-138.
    张佳福,董明晓等.基于Creator和Vega的塔式起重机视景仿真系统研究[J].建筑机械,2008,(19):
    张芹,吴慧中等.基于粒子系统的建模方法研究[J],计算机科学,2003,30(8):144-146.
    张小超,王一鸣等.GPS技术在大型喷灌机变量控制中的应用[J].农业机械学报,2004,35(6):102-105,123.
    张昱杰.基于MultiGen Creator和Vega的虚拟城市仿真技术研究[D].湖南大学,2008.
    张志宇,朱常志等.径向基神经网络在喷灌系统中的应用研究[J].人民黄河,2008, 30(6):58-59.
    张志宇.喷头水量分布的智能仿真与组合间距的优化[D].河北农业大学,2006. [63]赵时亮.虚拟实验:从思想实验到虚拟现实[J].科学技术与辩证法,1999,16(6):21-25.
    赵银玲,吴成富等.基于Vega的无人机视景仿真应用研究[J].测控技术,2008,27(1):96-99.
    中国农业机械化科学研究院编.农业机械设计手册上册[M].机械工业出版社,1988.
    周建军,王秀等.平移喷灌机变量灌溉决策支持系统研究[J].河北农业大学学报,2004,27(1):103-107.
    周世峰.喷灌工程学[M].北京:北京工业大学出版社,2004.
    周文辉.基于MultiGen Creator的汽车虚拟试验平台仿真研究[D].长安大学,2008.
    朱旦生,刘佳莉.用傅里叶变换表示喷灌组合均匀度[J].水利学报,1998(10):27-31.
    朱兴业.全射流喷头理论及精确喷灌关健技术研究[D].江苏大学,2009.
    Akima H. A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points[J]. ACMTransactions on Mathematical Software, 1978(4):148-159.
    Bernard Bremond,Bruno Molle.Characterization of rainfall under center pivot:influence of measuring procedure.Jounral of Irrigation and Drainage Engineering,1995,121(5):347-353.
    Bittinger M W,longenbaugh R A. Theoretical distribution of Water from a moving irrigation sprinkler.Transactions of the ASAE,1962,5(l):26-30.
    Christiansen J E. Irrigation by sprinkling[R].Califor-nia Agricultural
    Experiment Station Bull. No.670,Da-vis: CaliforniaUniversity,1942.
    Dadiao Chan, W. W. Wallender Economic Sprinkler Selection、Spacing and Orientatation,1984 TRANSAC-TIONS of the ASAE.
    Dick wolfe , Duke H R.Variability of center pivot uniformity measurements.ASAE Meeting Presentation,1986,PaperNo.86-2092.
    Fredrick Wieland, AlexSzabo, Naval Research Labortory, Jone Haynes. Object -Oriented Design of a Scene Generation Simulation. Proceedings of the 1994 Commuter Simulation Conference. 1995:174-185.
    GB/T 19797-2005/ISO 11545:2001.农业灌溉设备中心支轴式和平移式喷灌机水量分布均匀度的测定[s].中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会发布.北京.
    Heermann D F,Duke H R,Serafim A M,et al.Distribution functions to represent center-pivot water distribution.Transactions of theASAE,1992,35(5):1465-1472.
    Heermann D F,Hein P R. Performance characteristics of self-propelled centerPivot sprinkler irrigation system. Transactions of the ASAE,1968,11(l):11-15.Heermann D F,Swedensky D L.Simulation analysis of center pivot sprinkleruniformity.ASAE Meeting Presentation , St.Joseph , Mi.USA , PaperNo.84-2582.
    Hendawi M,Molle B,Folton C,et al.Measurement accuracy analysis ofsprinkler irrigation rainfall in relation to collector shape[J].Journal of Irrigationand Drainage Engineering,2005,131(5):477-483.
    Jarke J van Wijk. Flow visualization with surface particles[J].IEEE ComputerGraphics &Applications, July 1993:18-24.
    JB/T 6280.2-1992.电动大型喷灌机试验方法[S].中华人民共和国机械电子工业部发布.1992.
    Jos Stam,Eugene Fiume.Depicting fire and other gaseous pheno-mena usingdiffusion process[J]. Computer Graphics, Proceedings,1995:129-136.
    Li Jiusheng.Study on relationship between irrigation uniformity anddeep-seated leakage[J].RuralWater and Hydropower,1993,(l):l-4.
    Marek T H,Undersander D J,Ebeling L L.An aerial weighted uniformitycoefficient for center pivot irrigation system.Transactions of the ASAE,1986,29(6):1665-1667.
    MultiGen Creator User’s Guide, MultiGen-Paradigm Inc. OpenFlight SceneDescription Database Specification Version 15.7.0.2000[M].
    MultiGen Paradigm Inc,Vega Programmer’s Guide(Version 3. 7)[M].U.S.A:MultiGen -Paradigm Inc.2001.
    MultiGen-Paradigm Inc.MultGen Creator User’s Guide[M]. Version 2.5 USA:MultiGen -Paradigm Inc, 2004.
    Reevs W T.Particle system--A technique for modeling a classof fuzzy objects.SIGGRAPH′83, Computer Graphics,1983,17(3): 359-376.
    Richard G Allen, Jack Keller, Derrel Martin. Centerpivot system design [C].The Irrigation Association,2001:12-18.
    Ring L,Heermann D L.Determining center Pivot sprinkler uniformities. ASAE Meeting presentation,St.Joseph,Mi.USA,Paper No.78-2001.
    S.H. Choi and A.M.M. Chan, A virtual prototyping system for rapid product development, Computer-Aided Design 36 (2004):401–412.
    St.JosePh. Test procedure for determining the uniformity of water distribution of center Pivot,comer Pivot,and moving Iateral irrigation machines equipped with spray or sprinkler nozzles. ASAE S436.1,2001.
    Warrick A W and W R Gardner. Crop Yield as Affected by Spatial Variations of Soil and Irrigation[J]. Water Resource and Research, 1983,19:181-186.
    Wilmes G J, Martin D L, Supalla R J. Decision supportssystem for design of center pivots[J]. Transactions of theASAE,1993,37(1):165-175.