可液化土p-y曲线模型折减方法的研究进展
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对于海上风力发电机等海上构筑物的桩基础,在地震或波浪荷载作用下,由于超孔隙水压力的产生,地基土对桩身的水平抗力降低,如果按照正常情况下的p-y曲线进行设计,结果偏危险,因此设计时常对p-y曲线进行折减。本文阐述了可液化土p-y曲线折减方法的研究进展,着重概括了可液化土p-y曲线孔压折减系数的研究方法与成果,并将不同学者的研究成果进行对比,分析了不同研究方法对所得结果的影响。针对国内外学者对该问题的研究存在的不足,本文提出了若干思考和展望,认为应用p-y曲线折减的方法研究可液化土-桩相互作用问题是可行的。
To piles of offshore structures such as offshore wind turbines,a decrease in lateral resistance of foundation soil to piles happens when the system is influenced by the appearance of excess pore pressure owning to earthquake or wave load.Under that circumstance,the design may be dangerous if a normal pycurve is adopted.Therefore,a reduction on p-ycurves should be used in designing.Previous researches concerning this approach are summarized,analyzed and compared in this paper,with special emphasis on the research results of pore pressure reduction factor in liquefiable soil.Some discussions and perspectives are also drawn within this paper.Basically,it is reasonable and feasible to use such reduction methods in the studying of interactions between pile and liquefiable foundation soil.
引文
[1]张永利,周勇,李杰.东海大桥海上风电场基础设计与分析[J].四川建筑科学研究,2010,36(5):188-191.
    [2]王智强.国外海上风电场发展和启示[J].能源技术,2006,27(6):252-253.
    [3]杜子荣,于常宝,黄维平.海上单桩风力发电平台简化设计[C].贵州:2007年度海洋工程学术会议论文集,2007:112-121.
    [4]段郧峰,冉红玉,李凤丽.海上风电场风机基础的选型设计[J].水利与建筑工程学报,2010,8(1):129-131.
    [5]吴志良,王凤武.海上风电场风机基础型式及计算方法[J].水运工程,2008,10:249-258.
    [6]刘冰雪,唐小微.海上风机单桩基础承载特性三维有限元分析[J].山西建筑,2009,35(26):95-96.
    [7]康海贵,李玉刚,郇彩云.基于可靠度的海上风机基础结构优化设计方法研究[J].太阳能学报,2009,30(12):1602-1607.
    [8]上官士青.基于液化折减p-y曲线的海上风机单桩基础变形计算研究[D].青岛:中国海洋大学,2013.
    [9]Berrill J B,Yasuda S.Liquefaction and piled foundation:some issues[J].Journal of Earthquake Engineering,2002,6(1):1-41.
    [10]American Petroleum Institute.Recommended practice for planning,designing and constructing fixed offshore platforms-working stress design,21st edn[R].Washington:American Petroleum Institute,2000.
    [11]McClelland B,Focht J A.Soil modulus for laterally loaded piles[J].Transactions of the American Society of Civil Engineers,1958,123(2954):1049-1086.
    [12]Matlock H.Correlations for design of laterally loaded piles in soft clay[C].Houston,TX:Proceedings of the 2nd Annual Offshore Technology Conference,1970:577-594.
    [13]Reese L C,Cox W R,Koop F D.Field testing and analysis of laterally loaded piles in soft clay[C].Dallas,TX:Proceedings of7th Offshore Technology Conference,1975:671-690.
    [14]凌贤长,唐亮.液化场地桩基侧向响应分析中p-y曲线模型研究进展[J].力学进展,2010,5(25):250-262.
    [15]Liu L,Dobry R.Effect of liquefaction on lateral response of piles by centrifuge model tests[J].National Center for Earthquake Engineering Research(NCEER).Bulletin,1995,9(1):7-11.
    [16]Wilson D W,Boulanger R W,Kutter B L.Observed seismic lateral resistance of liquefying sand[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2000,126(10):898-906.
    [17]Kubo K.Vibration Test of a Structure Supported by Pile Foundation[C].Santiago:4th World Conference on Earthquake Engineering,1969(6):1-12.
    [18]Kubo K.Experemental Study of the Behaviour of Laterally Loaded Piles[C].Montreal:Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering,1965,1(2):275-279.
    [19]Kagawa T,Kraft L.Seismic p-y Responses of flexible piles[J].Journal of the Geotechnical Engineering Division,ASCE,1980,106(8):899-918.
    [20]Tokimatsu K,Suzuki H.Pore water pressure response around pile and its effects on p-y behavior during soil liquefaction[J].Soils and Foundations,2004,44(6):53-63.
    [21]Weaver T J,Ashford S A,Rollins K M.Response of a 0.6-m CISS Pile in Liquefied Soil under Lateral Loading[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):94-102.
    [22]Rollins K M,Hales L J.p-y Curves for large diameter shafts in liquefied sand from blast liquefaction tests[J].Seismic Performance and Simulation of Pile Foundations,2006(2):11-23.
    [23]Goh S,O'Rourke T D.Limit state model for soil-pile interaction during lateral spread[C].Seattle:Proc.of 7th US Japan Workshop on Earthquake Resistant Design of Life-Line Facilities and Countermeasures Against Soil Liquefaction,1999:237-260.
    [24]Wang S T,Reese L C.Design of pile foundations in liquefied soils[J].Geotechnical Earthquake Engineering and Soil Dynamic,1998,2(75):1331-1343.
    [25]刘红军,薛新华.砂土地震液化预测的人工神经网络模型[J].岩土力学,2004,25(12):1942-1946.
    [26]薛新华,张我华,刘红军.砂土地震液化的模糊综合评判法[J].重庆建筑大学学报,2006,28(1):55-58.
    [27]许国辉,孙永福,于月倩,等.黄河水下三角洲浅表土体的风暴液化问题[J].海洋地质与第四纪地质,2011,31(2):37-42.
    [28]唐亮.液化场地桩-土动力相互作用p-y曲线模型研究[D].哈尔滨:哈尔滨工业大学,2010.
    [29]刘惠珊,陈克景.液化土中的桩基试验[J].工程抗震,1991(2):19-23.
    [30]韦晓,范立础,王君杰.考虑桩-土-桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97.
    [31]陈跃庆,吕西林,侯建国,等.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报:工学版,2003,36(1):59-63.
    [32]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,22(4):53-59.
    [33]凌贤长,王东升,王志强,等.液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究[J].土木工程学报,2004,37(11):67-72.
    [34]冯士伦,王建华.饱和砂土中桩基的振动台试验[J].天津大学学报,2006,39(8):951-956.
    [35]李雨润,袁晓铭,梁艳,等.桩-液化土相互作用p-y关系分析[J].地震工程与工程振动,2008,28(3):165-171.
    [36]袁晓铭,李雨润,孙锐.地面横向往返运动下可液化土层中桩基响应机理[J].土木工程学报,2008,41(9):103-110.
    [37]李雨润,袁晓铭,梁艳.桩-液化土相互作用p-y曲线修正计算方法研究[J].岩土工程学报,2009,31(4):595-599.
    [38]王成雷,王建华,冯士伦.土层液化条件下桩土相互作用p-y关系分析[J].岩土工程学报,2007,29(10):1500-1505.
    [39]王建华,戚春香,余正春,等.弱化饱和砂土中桩的p-y曲线与极限抗力研究[J].岩土工程学报,2008,30(3):309-315.
    [40]凌贤长,唐亮,于恩庆.可液化场地地震振动孔隙水压力增长研究的大型振动台试验及其数值模拟[J].岩石力学与工程学报,2006,25(2):3998-4003.
    [41]戚春香,王建华.液化土中水平承载桩动p-y曲线研究[J].中国海洋平台,2007,22(3):1-6+17.
    [42]Jeng D S.Wave-induced sea floor dynamics[J].Applied Mechanics Reviews,2003,56(4):407-429.
    [43]S Sassa,H Sekiguchi.Wave-induced liquefaction of beds of sand in a centrifuge[J].Géotechnique,1999,49(5):621-638.
    [44]王虎.波浪作用下黄河三角洲粉质土海床不稳定机制研究[D].青岛:中国海洋大学,2012.
    [45]张民生,刘红军,李晓东,等.波浪作用下黄河口粉土液化与“铁板砂”形成机制的模拟试验研究[J].岩土力学,2009,30(11):3347-3351.
    [46]Lin Y S,Jeng D S.Response of poro-elastic seabed in front of a breakwater:A finite element analysis[J].Coastal Engineering,1996(39):165-183.
    [47]Jeng D S.Wave-induced seabed instability in front of a breakwater[J].Ocean Engineering,1997,24(10):887-917.
    [48]Jeng D S.Mechanism of the wave-induced seabed response in the vicinity of a breakwater:A review[J].Ocean Engineering,2001,28(5):539-572.
    [49]Jeng D S,Lin Y S.Wave-induced pore pressure around a buried pipeline in Gibson Soil:Finite element analysis[J].International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(13):1559-1578.
    [50]Jeng D S,Lin Y S.Response of in-homogeneous seabed around buried pipeline under ocean waves[J].Eng Mech Div,2000,126(4):321-332.
    [51]Jeng D S,Postma P F.Stability analysis of offshore pipeline buried in porous seabed:Finite element analysis[C].Vienna:8th International Conference on Civil/Structure Engineering Computing,2001:116.
    [52]Reese L C,Van Impe W F.Single Piles and Pile Group Under Lateral Loading[M].Rotterdam:Balkema,A A,2001.
    [53]王腾,王天霖.粉土p-y曲线的试验研究[J].岩土力学,2009,30(5):1343-1346.
    [54]何永新.水平荷载作用下独立桩p-y曲线试验研究[D].天津:天津大学,2008.
    [55]刘红军,吕小辉,张冬冬,等.黄河三角洲粉土中水平受力桩p-y曲线试验研究[J].工业建筑,2014,44(7):79-83.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心