摘要
为研究和对比不同压实度铁路路堤边坡的地震响应,设计了路堤本体压实度分别为95%、91%、87%和83%的4组路堤边坡模型,开展了不同压实度路堤边坡的振动台试验研究。通过穿插进行白噪声激励得到不同压实度路堤边坡的动力特性参数;通过施加不同类型和不同强度的地震动激励,研究不同压实度路堤边坡加速度放大倍数分布规律及其影响因素。结果表明,随着地震动激励次数的增多,路堤边坡自振频率下降,阻尼比增大,压实度对路堤边坡动力特性变化影响显著;加速度放大倍数沿路堤边坡高度呈非线性增大,加速度放大倍数随地震动激励强度增大而减小;台面输入的地震波经路堤边坡传播后,其频谱特性发生了明显的变化,不同压实度路堤边坡对地震波频谱特性的影响不同;不同地震动激励下不同压实度路堤边坡的加速度放大倍数分布情况有所差异,这与地震动频谱特性和路堤边坡动力特性参数有关。
In order to study and compare the seismic response of railway embankment slopes of different compaction degrees,shaking table model tests on railway embankment slopes with compaction degrees of 95%,91%,87% and 83% in embankment noumenon are designed and carried out.White noise excitations are interspersed among seismic waves to obtain dynamic characteristic parameters of embankment slopes with different compaction degrees.Different amplitudes and different types of seismic waves are performed to study the distribution behaviors of acceleration magnification along the height of embankment slopes and their influential factors.The results show that the natural vibration frequencies of embankment slopes decrease,and damping ratios increase with the increase of seismic excitations.The dynamic characteristics of embankment slopes are greatly affected by the compaction degree of embankment noumenon.Acceleration amplifications increase nonlinearly along the height of embankment slopes;and the acceleration amplifications decrease with the increase of input excitation intensity.The embankment slopes make the spectrum characteristics of input seismic waves change greatly;and the spectrum characteristics of acceleration responses differ among the embankment slopes of different compaction degrees.The distributions of acceleration magnification of different compaction degree embankment slopes differ under excitations of different seismic waves,which are influenced by both of the spectrum characteristics of seismic waves and dynamic characteristics of embankment slopes.
引文
[1]苏栋,李相崧.地震历史对砂土抗液化性能影响的试验研究[J].岩土力学,2006,27(10):1815-1818.SU Dong,LI Xiang-song.Centrifuge investigation oneffect of seismic history on resistance of sand toliquefaction[J].Rock and Soil Mechanics,2006,27(10):1815-1818.
[2]DUNGCA J R,KUWANO J,TAKAHASHI A,et al.Shaking table tests on the lateral response of a pile buriedin liquefied sand[J].Soil Dynamics and EarthquakeEngineering,2006,26(2-4):287-295.
[3]LIN M L,WANG K L.Seismic slope behavior in alarge-scale shaking table model test[J].EngineeringGeology,2006,86(2-3):118-133.
[4]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624-632.XU Guang-xing,YAO Ling-kan,GAO Zhao-ning,et al.Large-scale shaking table model test study on dynamiccharacteristics and dynamic response of slope[J].ChineseJournal of Rock Mechanics and Engineering,2008,27(3):624-632.
[5]刘小生,王钟宁,赵剑明,等.面板堆石坝振动模型试验及动力分析研究[J].水利学报,2002,33(2):29-35.LIU Xiao-sheng,WANG Zhong-ning,ZHAO Jian-ming,et al.Advancement of technology on shaking table modeltest and dynamic analysis of CFRD[J].Journal ofHydraulic Engineering,2002,33(2):29-35.
[6]陈建斌,周立运.大型粉煤灰坝模型抗震试验研究[J].岩土力学,2006,27(7):1109-1113.CHEN Jian-bin,ZHOU Li-yun.Experimental study ofearthquake resistance and failure test of models forlarge-sized fly-ash dam[J].Rock and Soil Mechanics,2006,27(7):1109-1113.
[7]邓学晶,孔宪京,刘君.城市垃圾填埋场的地震响应及稳定性分析[J].岩土力学,2007,28(10):2095-2100.DENG Xue-jing,KONG Xian-jing,LIU Jun.Seismicresponse and stability analysis of municipal wastelandfills[J].Rock and Soil Mechanics,2007,28(10):2095-2100.
[8]孔宪京,邓学晶.城市垃圾填埋场地震变形机理的振动台模型试验研究[J].土木工程学报,2008,41(5):65-74.KONG Xian-jing,DENG Xue-jing.Shaking table test onthe mechanism of seismically induced deformation ofmunicipal waste landfills[J].China Civil EngineeringJournal,2008,41(5):65-74.
[9]李昀,杨果林,林宇亮.水平地震作用下绿色加筋格宾挡土墙动力特性试验研究[J].中南大学学报(自然科学版),2010,41(1):347-352.LI Yun,YANG Guo-lin,LIN Yu-liang.Dynamiccharacteristics of green reinforced gabion walls subjectedto horizontal seismic loading[J].Journal of CentralSouth University(Science and Technology),2010,41(1):347-352.
[10]DIMITRIS P,MATT D,DAVID M W.Numericalsimulation of dynamic soil-structure interaction inshaking table testing[J].Soil Dynamics and EarthquakeEngineering,2008,28(6):453-467.
[11]CHAU K T,SHEN C Y,GUO X.Nonlinear seismicsoil-pile-structure interactions:Shaking table tests andFEM analyses[J].Soil Dynamics and EarthquakeEngineering,2009,29(2):300-310.
[12]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005.
[13]杨林德,季倩倩,郑永来,等.地铁车站结构振动台试验中模型箱设计的研究[J].岩土工程学报,2004,26(1):75-78.YANG Lin-de,JI Qian-qian,ZHENG Yong-lai,et al.Study of design of test box in shaking table test forsubway station structure in soft soil[J].Chinese Journalof Geotechnical Engineering,2004,26(1):75-78.
[14]杨果林,钟正,林宇亮.砂黏土变形与强度特性的大型三轴试验研究[J].铁道科学与工程学报,2010,7(5):25-29.YANG Guo-lin,ZHONG Zheng,LIN Yu-liang.Researchon deformation and strength behavior of sandy clay basedon large-scale triaxial tests[J].Journal of RailwayScience and Engineering,2010,7(5):25-29.
[15]李育枢,李天斌,王栋,等.黄草坪2#隧道洞口段减震措施的大型振动台模型试验研究[J].岩石力学与工程学报,2009,28(6):1128-1136.LI Yu-shu,LI Tian-bin,WANG Dong,et al.Large-scaleshaking table test for vibration-absorption measures ofportal section of Huangcaoping tunnel No.2[J].ChineseJournal of Rock Mechanics and Engineering,2009,28(6):1128-1136.