基于双二次插值的地震波场有限元法数值模拟
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
有限元法是地震波场数值模拟最常用的一种方法,能够比较客观地反映地震波在复杂介质中的传播规律。为了提高有限元法数值模拟的计算效率和减少内存占用,采用双二次插值法实现了二维声波方程的有限元法数值模拟。在矩形网格剖分情况下,取每个单元的4个角点和4边中点为节点,在单元内采用双二次函数进行插值;根据质量守恒原则,将单元的质量分配到8个节点上,得到角节点质量非负的集中质量矩阵,避免矩阵的求逆运算;对结构刚度矩阵采用紧凑存储(只存储结构刚度矩阵下三角部分的非零元素),使得结构刚度矩阵每一行需存储的元素不超过11个;同时在时间循环过程中零元素不参与运算。模型算例的双二次插值有限元法数值模拟结果与双线性插值有限元法数值模拟结果对比表明,在无可见数值频散情况下,前者单步耗时更短,内存占用更少。
Finite element method is one of the most common methods for numerical simulation of seismic wavefield,it can objectively express the seismic wave propagation in complex medium.In this paper,we use quadratic interpolation in rectangular element to achieve the numerical simulation of seismic wavefield,the nodes of each element including the four corner nodes and the midpoints of four edges,and the interpolation is by biquadratic functions for each element.According to the law of mass conservation,we get the diagonal lumped mass matrix,whose corner nodes quality is non-negative and the inversion operation of mass matrix is avoided.Compacting memory is adopted to store structural stiffness matrix(only storing the none-zero elements in lower triangular matrix),the number of elements stored in each row of structural stiffness matrix is no more than 11,and the zero elements is not involved in computing.And by this method,not only reducing the memory occupation,but also improving the efficiency of calculation.Finally,through the comparison of biquadratic interpolation and bilinear interpolation in numerical simulation,the results show that without visible numerical dispersion,the time-consuming and memory occupation of single step of biquadratic interpolation is less than bilinear interpolation.
引文
[1]吴国忱,王华忠.波场模拟中的数值频散分析与校正策略[J].地球物理学进展,2005,20(1):58-65Wu G C,Wang H Z.Analysis of numerical dispersion in wave-field simulation[J].Progress in Geophysics,2005,20(1):58-65
    [2]孙林洁,印兴耀.基于PML边界条件的高倍可变网格有限差分数值模拟方法[J].地球物理学报,2011,54(6):1614-1623Sun L J,Yin X Y.A finite-difference scheme based on PML boundary condition with high power grid step variation[J].Chinese Journal of Geophysics,2011,54(6):1614-1623
    [3]Alford R M,Kelly K R,Boore D M.Accuracy of finite-difference modeling of the acoustic wave equation[J].Geophysics,1974,39(6):834-842
    [4]殷文,印兴耀,吴国忱,等.高精度频率域弹性波方程有限差分方法及波场模拟[J].地球物理学报,2006,49(2):561-568Yin W,Yin X Y,Wu G C,et al.The method of finite difference of high precision elastic wave equations in the frequency domain and wave-field simulation[J].Chinese Journal of Geophysics,2006,49(2):561-568
    [5]Marfurt K J.Accuracy of finite-difference and finiteelement modeling of the scalar and elastic wave equations[J].Geophysics,1984,49(5):533-549
    [6]薛东川,王尚旭,焦淑静.起伏地表复杂介质波动方程有限元数值模拟方法[J].地球物理学进展,2007,22(2):522-529Xue D C,Wang S X,Jiao S J.Wave equation finiteelement modeling including rugged topography and complicated medium[J].Progress in Geophysics,2007,22(2):522-529
    [7]薛东川,王尚旭.波动方程有限元叠前逆时偏移[J].石油地球物理勘探,2008,43(1):17-21Xue D C,Wang S X.Wave-equation finite element prestack reverse-time migration[J].Oil Geophysical Prospecting,2008,43(1):17-21
    [8]刘有山,滕吉文,刘少林,等.稀疏存储的显式有限元三角网格地震波数值模拟及其PML吸收边界条件[J].地球物理学报,2013,56(9):3085-3099Liu Y S,Teng J W,Liu S L,et al.Explicit finite element method with triangle meshes stored by sparse format and its perfectly matched layers absorbing boundary condition[J].Chinese Journal of Geophysics,2013,56(9):3085-3099
    [9]史明娟,徐世浙,刘斌.大地电磁二次函数插值的有限元法正演模拟[J].地球物理学报,1997,40(3):421-430Shi M J,Xu S Z,Liu B.Finite element method using quadratic element in MT forward modeling[J].Chinese Journal of Geophysics,1997,40(3):421-430
    [10]刘云,王绪本.大地电磁二维自适应地形有限元正演模拟[J].地震地质,2010,32(3):382-391Liu Y,Wang X B.FEM using adaptive topography in 2D MT forward modeling[J].Seismology and Geology,2010,32(3):382-391
    [11]戴前伟,王洪华,冯德山,等.基于双二次插值的探地雷达有限元数值模拟[J].地球物理学进展,2012,27(2):736-743Dai Q W,Wang H H,Fei D S,et al.Finite element numerical simulation for GPR based on quadratic interpolation[J].Progress in Geophysics,2012,27(2):736-743
    [12]郭建.一种有限元快速算法[J].石油物探,1991,30(2):36-43Guo J.A kind of fast finite element algorithm[J].Geophysical Prospecting for Petroleum,1991,30(2):36-43
    [13]杜世通.变速不均匀介质中波动方程的有限元法数值解[J].华东石油学院学报,1982,6(2):1-20Du S T.Finite element numerical solution of wave propagation in non-homogeneous medium with variable velocities[J].Journal of East China Petroleum Institute,1982,6(2):1-20
    [14]徐世浙.地球物理中的有限元法[M].北京:科技出版社,1994:1-308Xu S Z.Finite Element method for geophysics[M].Beijing:Science Press,1994:1-308
    [15]王勖成.有限单元法[M].北京:清华大学出版社,2003:472-475Wang M C.Finite element method[M].Beijing:Tsinghua University Press,2003:472-475
    [16]王月英,宋建国.波场正演模拟中Sarma边界条件的改进[J].石油物探,2007,46(4):359-362Wang Y Y,Song J G.Improvement of Sarma boundary condition in wavefield forward modeling[J].Geophysical Prospecting for Petroleum,2007,46(4):359-362

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心