摘要
在出现区域大震后,为了迅速展开有效的应急救援行动,需要及时准确了解烈度分布.目前震动图的获得有震后人工调查、震源参数计算、地震监测台网、地震烈度速报台网等几种方式,其中最有效的是在重点监护区建立烈度速报台网.但烈度速报台网建设往往沿用地震监测台网的模式,建设成本高、台站密度有限、实时数据传输量大.本文研制的地震动参数速报仪采用MEMS加速度计为测震传感器和ARM+Linux嵌入式计算机技术,具有体积小、成本小、功耗低、一体化、智能化的特点;其内置地震信息实时处理算法,能够自动判别地震事件并计算地震动参数;在实际应用中安装简便.通过大量密集布设这种小型仪器而组建的地震动参数速报网络,具有数据传输量小、分布式计算、组成的速报网络可靠性高、能够快速产出高分辨率的精细震动图等特点.
After violent earthquakes,we need to figure out the seismic intensity distribution as fast as possible in order to effectively operate the emergency rescue.Nowadays,the methods to get earthquake maps include manual survey after earthquake,earthquake monitor network,earthquake intensity fast report network,among them the most effective one is earthquake intensity fast report network.The earthquake monitoring network construction pattern is applied to the construction of this network,so there are several disadvantages like the large construction costs,limited site density,huge real time data transfer volume,etc. According to the requirements for fast reports of big earthquakes, we have used MEMS seismometers to manufacture an instrument of small volume,low costs,low consumption,and simple installation and strong motion monitoring to calculate earthquake parameters automatically.The features of hardware design of the earthquake parameter fast report unit are:1.Low costs,low consumption,small volume,14-bit 3-component MEMS digital accelerometer as earthquake sensor,which fits the requirements of intensity fast report resolution while taking account of the entire unit volume and costs;2.The use of high performance low consumption 32 bit ARM embedded CPU as processor to meet the acquisition,processing,storage and transfer requirements of fast report unit;3.Having used inner 32 GB large volume SD card which enablesan extended storage of cycling continuous data as long as 8months;4.Having included wired IP and wireless GSM as two physical links to access the internet,achieved a long distance data transfer of the unit;5.Build-in high capacity rechargeable Lithium battery as backup power to make sure the unit can continuously work 24 hours in case of external power failure after big earthquakes.Tailored kennel Linux operation system is applied to the unit as the software platform,and we adopt hierarchy models design from top to bottom.The application layer is suing multi-thread to archive multi-task processing,including real-time acquisition model,local database storage management model,earthquake information processing model,long distance data service model,etc.Applying drive layer has achieved sensor configuration,sensor data read/write and read/write kennel data files,etc.The main technical indicators of the earthquake parameter fast report unit are:threecomponent acceleration observation with the measure range of±2g,sample rate of 200 Hz,self noise of 99μg/槡Hz,inner 32 GB data storage recording a cycle of around 8 months in the continuous data acquisition;wired IP and wireless GSM are the two ways used for accessing the internet,which improved the reliability of data transfer.Build-in high capacity rechargeable Lithium battery to provide 24 more hours of work time after losing external power.Power consumption is lower than 1.5 W.Earthquake parameter fast report unit using MEMS accelerometer as sensor and ARM +Linux embedded technology,has the advantages such as,small volume,low cost,low consumption,integration and intelligence.This small size digital strong motion seismograph is the integration of sensor,acquisition unit and data transfer.The realtime processing algorithm for the seismic information can automatically recognize earthquake events and calculate ground motion parameters.In practical applications,this unit is easy to install.By establishing high density earthquake parameter fast report network,the high resolution,fine motion map can be made really fast,and this network is featured by using small data transfer volume,distributed calculation,high reliability.
引文
Allen R M,Brown H,Hellweg M,et al.2009.Real-timeearthquake detection and hazard assessment by ElarmS acrossCalifornia.Geophysical Research Letters,36(5):doi:10.1029/2008GL036766.
Chen D Q,Bai L,Yang Y,et al.2009.Information gathering andtransferring scheme in rapid post-earthquake information report.Transducer and Microsystem Technologies(in Chinese),28(7):53-55,70.
Chen K,Yu Y X,Gao M T.2010.Research on ShakeMap systemin terms of the site effect.Earthquake Research in China(inChinese),26(1):92-102.
Chen K,Yu Y X,Gao M T,et al.2011.Research on ShakeMap forYushu earthquake in Qinghai based on source process.Earthquake Research in China(in Chinese),27(1):56-64.
Chen Z B,Teng J W,Lin J,et al.2006.Design of BSR-2broadband seismic recorder.Chinese J.Geophys.(in Chinese),49(5):1475-1481.
Fu J H,Wang J J,Liu X X,et al.2009.Earthquake disasterinformation system with automatic acquiring ability.Journal ofData Acquisition&Processing(in Chinese),24(S1):310-314.
Fu J H,Wang J J,Li Z T,et al.2010.Multi-sensor distributedearthquake and secondary disaster information integratedacquisition system.Transducer and Microsystem Technologies(in Chinese),29(4):87-89.
Gao M T,Xiao H P,Yan W M,et al.2008.The importance ofseismic zonation in moderate earthquake area and the recenttechnical progress.Technology for Earthquake Disaster Prevention(in Chinese),3(1):1-7.
He J Y,Chen H Z,Li W D.2004.Development of rapid generationof intensity map.Recent Developments in World Seismology(inChinese),(3):6-9.
He P,Zhu S J,Liu J X.2010.Design of portable seismic signaldetector based on ADXL330.Journal of Harbin University ofCommerce(Natural Science Edition)(in Chinese),26(1):45-49.
Jin X,Zhang H C,Wei Y X,et al.2010.Preliminary study of nearreal-time interpolation calculation of ShakeMap based on seismicmonitoring network′s information.Journal of Disaster Prevention andReduction(in Chinese),26(1):1-11.
Kuwata Y,Ishikawa Y,Ohtani H.2000.An architecture forcommand and control in disaster response systems.//Proceedings ofthe 26th Annual Conference on the IEEE Industrial ElectronicsSociety.Nagoya:IEEE,1:120-125.
Li S Y,Jin X,Chen X,et al.2002.Rapid reporting of peak strongmotion and seismic intensity.Earthquake Engineering andEngineering Vibration(in Chinese),22(6):1-7.
Lin T L,Wu Y M,Chen D Y,et al.2011.Magnitude estimationsin earthquake early warning for the 2010Jiasian earthquake,Taiwan.Seismol.Res.Lett.,82(2):201-206,doi:10.1785/gssrl.82.2.201.
Lu Q H,Wu T B,Lin J.2009.A research report on developmentof instrument science for geophysics.Progress in Geophys.(inChinese),24(2):750-758,DOI:10.3969/j.issn.1004-2903.02.053.
Mo S J,Feng Q M,Jia J.2005.Research on the informationfeedback approach and integrated software for the situation of anearthquake disaster.World Earthquake Engineering(in Chinese),21(4):126-132.
Park S,Elrick S.1998.Predictions of shear-wave velocities insouthern California using surface geology.Bulletin of theSeismological Society of America,88(3):677-685.
Tan Q,Wang J J,Liu G Z,et al.2010.Design of managementsystem for the earthquake intensity sensor network based onIPv6.Transducer and Microsystem Technologies(in Chinese),29(10):103-109.
Wang C X.2011.Achieve power spectrum estimation based onMATLAB.Journal of Qufu Normal University(in Chinese),37(2):59-62.
Wang J J,Wu R H,He J Y.2009.Development of seismicintensity meter based on IPv6and wireless network.ModernElectronics Technique(in Chinese),32(1):23-25,29.
Wang Q M,Yang Y E,Su M B,et al.2009.Study on sensingcharacteristics of micro capacitive sensor based on MEMS.Chinese Journal of Sensors and Actuators(in Chinese),22(10):1396-1400.
Wang X Q,Shao H C,Ding X.2003.Model for fast assessment ofearthquake damage and losses considering uncertainty ofepicenters obtained from rapid determination of earthquakelocation.Earthquake Engineering and Engineering Vibration(in Chinese),23(6):198-201.
Wang Y S,Zhou Z H,Wang W.2008.A hypothesis testing basedmethod for seismic intensity rapid assessment by strong groundmotion parameters.Journal of Earthquake Engineering andEngineering Vibration(in Chinese),28(5):49-54.
Wu Y M,Kanamori H.2008.Development of an earthquake earlywarning system using real-time strong motion signals.Sensors,(8):1-9.
Xu J H,Yang Y,Den M X,et al.2010.GIS-based quick report andestimation of earthquake disaster information.Journal ofNatural Disasters(in Chinese),19(4):141-146.
Xu S S.2012.Construction of the rapidly-reported network ofseismic intensity of Chengdu Municipal and consideration.Earthquake Research in Sichuan(in Chinese),(2):35-37.
Zeren Z M,Chen H Z,He J Y,et al.2006.Research on rapidgeneration system of ShakeMap.Progress in Geophysics(inChinese),21(3):809-813.
Zhang Z J,Li W D,Li D H,et al.2010.Some thoughts concerningdevelopment of rapid report of seismic intensity information.Recent Developments in World Seismology(in Chinese),(4):23-31.
陈丹琪,白灵,杨颖等.2009.震后灾情速报中信息获取传输解决方案.传感器与微系统,28(7):53-55,70.
陈鲲,俞言祥,高孟潭.2010.考虑场地效应的ShakeMap系统研究.中国地震,26(1):92-102.
陈鲲,俞言祥,高孟潭等.2011.考虑震源破裂过程的青海玉树地震震动图研究.中国地震,27(1):56-64.
陈祖斌,滕吉文,林君等.2006.BSR-2宽频带地震记录仪的研制.地球物理学报,49(5):1475-1481.
付继华,王建军,刘晓皙等.2009.灾情数据自动获取的地震灾情信息系统.数据采集与处理,24(S1):310-314.
付继华,王建军,李智涛等.2010.多传感器分布式震情与次生灾情综合采集系统.传感器与微系统,29(4):87-89.
高孟潭,肖和平,燕为民等.2008.中强地震活动地区地震区划重要性及关键技术进展.震灾防御技术,3(1):1-7.
何加勇,陈会忠,李卫东.2004.地震烈度分布快速产出发展概况.国际地震动态,(3):6-9.
何平,朱水娟,刘健行.2010.基于ADXL330的便携地震速报仪设计.哈尔滨商业大学学报,26(1):45-49.
金星,张红才,韦永祥等.2010.基于地震监测台网资料近实时插值计算震动图的初步研究.防灾减灾学报,26(1):1-11.
李山有,金星,陈先等.2002.地震动强度与地震烈度速报研究.地震工程与工程振动,22(6):1-7.
陆其鹄,吴天彪,林君.2009.地球物理仪器学科发展研究报告.地球物理学进展,24(2):750-758,DOI:10.3969/j.issn.1004-2903.2009.02.053.
莫善军,冯启民,贾靖.2005.地震现场灾情信息反馈途径和集成软件.世界地震工程,21(4):126-132.
谭巧,王建军,刘冠中等.2010.IPv6地震烈度传感器网络管理系统设计.传感器与微系统,29(10):103-109.
王春兴.2011.基于MATLAB实现经典功率谱估计.曲阜师范大学学报,37(2):59-62.
王建军,吴荣辉,何加勇.2009.基于IPv6和无线网络的地震烈度计开发.现代电子技术,32(1):23-25,29.
王庆敏,杨要恩,苏木标等.2009.MEMS微电容式传感器的传感特性研究.传感技术学报,22(10):1396-1400.
王晓青,邵辉成,丁香.2003.地震速报参数不确定性的应急灾害损失快速评估模型.地震工程与工程振动,23(6):198-201.
王玉石,周正华,王伟.2008.基于假设检验的地震动强度(烈度)速报方法.地震工程与工程振动,28(5):49-54.
徐敬海,杨燕,邓民宪等.2010.基于GIS的地震灾情速报与快速判定.自然灾害学报,19,(4):141-146.
徐水森.2012.成都市地震烈度速报台网建设与思考.四川地震,(2):35-37.
泽仁志玛,陈会忠,何加勇等.2006.震动图快速生成系统研究.地球物理学进展,21(3):809-813.
张晁军,李卫东,李大辉等.2010.有关地震烈度速报信息化发展的思考.国际地震动态,(4):23-31.