多种群遗传算法在微震震源定位中的应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
微震震源的精确和快速定位对坑道安全的预测至关重要;在设定均质均速模型条件下,两两检波器的观测走时和计算走时的拟合差绝对值之和为适应度函数,把微震震源定位转换为求解优化问题;采用格雷码对震源位置进行编码,提高了遗传算法的局部搜索能力;同时采用两个群体独立进化,分别利用轮盘和排序方法从两个群体中选择优秀个体,将各种群中的优秀个体进行交叉运算和变异产生新的个体,从而提高了遗传算法的全局搜索能力;通过实验证实优化后的遗传算法在微震震源定位中具有较高的性能和精度。
It is very important to accurately and rapidly locate the micro-seismic source for the prediction of tunnel safety.Under the condition of setting homogeneous medium and average speed model,the fitness function can be expressed as the sum of absolute value of fitting error of the observation time and the calculation time between two neighboring detectors,and then the micro-seismic source location can be converted into solving the optimization problems.The local search ability of genetic algorithm is enhanced by using the Gray Code to encode the micro-seismic source location.At the same time,the independent evolutionary approach is adopted to obsolete two groups through roulette and sorting,respectively.And the best are selected from two groups of individuals to crossover and mutation to produce new individual to improve the global search ability of genetic algorithm.The experiments confirm that the optimized genetic algorithm has high performance and precision in micro-seismic source location.
引文
[1]史红,成云海,王存文.基于微地震监测技术的岩体失稳研究及其进展[J].金属矿山,2008,384:1-5.
    [2]范东明.非线性最小二乘参数平差的非线性规划算法研究[J].西南交通大学学报,2001,36(5).
    [3]王家映.地球物理资料非线性反演方法讲座(二)蒙特卡洛法[J].工程地球物理学报,2007,4(2):81-85.
    [4]刘全,王晓燕,傅启明,等.双精英协同进化遗传算法[J].软件学报,2012,23(4):765-775.
    [5]霍凤斌.混沌模拟退火算法在储层参数反演中的应用[D].成都:成都理工大学,2007.
    [6]张超群,郑建国,钱洁.遗传算法编码方案比较[J].计算机应用研究,2011,28(3):819-822.
    [7]王进强,姜福兴,吕文生,等.地震波传播速度原位试验及计算[J].煤炭学报,2010,35(12):2059-2063.
    [8]吕进国,姜耀东,赵毅鑫,等.基于稳健模拟退火-单纯形混合算法的微震定位研究[J].岩石力学,2013,34(8):2195-2203.
    [9]李会义,姜福兴,杨淑华.基于Matlab的岩层微地震破裂定位求解及其应用[J].煤炭学报,2006,31(2):154-158.
    [10]陈炳瑞,冯夏庭,李庶林,等.基于粒子群算法的岩体微震源分层定位方法[J],岩石力学与工程学报,2009,28(4):740-749.
    [11]Kanmoy D,Amritpratap,Sameer A,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2).
    [12]刘学增,周敏.改进的自适应遗传算法及其工程应用[J].同济大学学报(自然科学版),2009,37(3):303-307.
    [13]王冠,林明,林永才.嵌入式工业机器人遗传算法逆解的实现[J].计算机测量与控制,2012,20(6):1639-1642.
    [14]魏全新,刘贤锋,黄锵,等.遗传算法选择方法的比较分析[J].通讯和计算机,2008,5(8):61-65.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心