液化地层下地铁工程抗地震液化措施研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震液化可能诱发极为严重的破坏,已成为工程领域的重要研究课题。目前,在可液化地层下地铁工程抗地震液化设计及施工经验较少,且现行规范针对液化地层所给定的处理原则在工程实际应用中较难操作。本文以天津地铁5号线穿越中等-严重液化粉土层区段为工程背景,同时以地震液化机理、影响因素及抗液化规范的应用为基础,结合数值模拟及现场试验,给出了地铁工程抗地震液化处理措施建议,并对各项措施的适用性进行了分析。研究结果表明:抗液化措施应结合地铁结构型式、结构与液化土层的相互位置关系、液化土层的厚度、液化等级以及周边环境等因素综合确定;在结构承载力及抗浮稳定性验算中应计入土层液化引起的土压力增加、摩阻力降低以及浮力增加等因素的影响;注浆加固对盾构区间抗地震液化有利。
The earthquake liquefaction, which may induce extremely serious damage, has become an important issue in the field of engineering. At present, the practice in designing and construction of anti-liquefaction measures for subway engineering in liquefaction layers is few, and it is difficult for the existing specifications to provide processing principles of for liquefied stratum to operate in practical engineering application. Combined with a practical engineering of Tianjin metro line#5 with station and interval shield crossing the middle-seriously liquefied silty soil, this paper gives the recommendations of anti-liquefaction measures and the applicability of the measures by the means of numerical simulation and field test which based on the theoretical results of liquefaction mechanism,influence factors and effects. The research results show that the determination of anti-liquefaction measures should be combined with the subway structure pattern, the relative relationship of structure and the liquefiable layers, the thickness of the liquefiable layers, liquefaction grade and the surrounding environmental conditions and other factors. The structure capacity and anti floating stability checking should consider the impaction of liquefaction,such as the increase of inner pressure, the decrease of friction, the increase of buoyancy and etc. Grouting reinforcement is favorable for interval shield to resist seismic liquefaction.
引文
陈国兴,左熹,王志华等,2012.可液化场地地铁车站结构地震破坏特性振动台试验研究.建筑结构学报,33 (1):128—137.
    陈建伟,苏经宇,苏幼坡,2013.场地地震液化的主要影响因素分析.安全与环境工程,20(4):18—20.
    陈伟坚,林慧常,2009.广州地铁建设中的地震液化问题研究.广东土木与建筑,(11):40—42.
    宫全美,周顺华,张婉琴等,2000.盾构隧道易液化地基的抗液化措施研究.上海铁道大学学报,21(10):110 —114.
    龚思礼,2002.建筑抗震设计手册.北京:中国建筑工业出版社.
    何剑平,2012.液化场地下结构抗震分析研究.济南:山东大学.
    刘华北,宋二祥,2006.截断墙法降低地下结构地震液化上浮.岩土力学,27(7):1049—1055.
    李立云,崔杰,景立平等,2005.饱和粉土振动液化分析.岩土力学,26(10):1663—1666.
    鲁晓兵,谈庆明,王淑云等,2004.饱和砂土液化研究新进展.力学进展,34(1):87—96.
    任红梅,吕西林,李培振,2007.饱和砂土液化研究进展.地震工程与工程震动,27(6):166—175.
    上海市城乡建设与交通委员会,2009.地下铁道建筑结构抗震设计规范(DG/TJ08-2064-2009).上海:上海市建筑建材业市场管理总站.
    孙锐,袁晓铭,2006.第11届国际土动力学和地震工程会及第13届世界地震工程会议砂土液化研究综述.世界地震工程,22(1):16—20.
    师新明,1990.国外地震砂土液化研究.铁道工程学报,(3):148—153.
    王刚,张建民,2007.地震液化问题研究进展.力学进展,37(4):575—589.
    王抒扬,2009.深层搅拌桩复合地基抗液化分析.成都:西南交通大学.
    王维铭,2013.场地液化特征研究及液化影响因素评价.哈尔滨:中国地震局工程力学研究所.
    汪闻韶,1981.土的液化机理.水利学报,(5):22—33.
    张轩,2014.砂土地基地震液化处理方法初步研究.西部探矿工程,(5):4—6.
    中华人民共和国住房与城乡建设部,2010.建筑抗震设计规范(GB 50011-2010).北京:中国建筑工业出版社.
    中华人民共和国住房与城乡建设部,2012.建筑地基处理技术规范(JGJ79-2012).北京:中国建筑工业出版社.
    中华人民共和国住房与城乡建设部,2014.城市轨道交通结构抗震设计规范(GB 50909-2014).北京:中国标准出版社.
    若松加寿江,2011.日本の液状化覆歷マップ.東京:東京大学出版会.
    Patricia M.Gallagher,James K.,2002.Mitchell.Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand.Soil Dynamics and Earthquake Engineering,(22):1017—1026.
    Seed H.B.,Leek L.,1966.Liquefaction of saturated sands during cyclic loading.Journal of Soil Mechanics and Foundation Engineering Division,ASCE,92(SM6):105—134.
    Tamari Y.,Towhata I.,2003.Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction.Soil and Foundation,43(2):69—87.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心