山脊线与坡度和峰值速度放大系数的相关性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地形效应是地震工程和地震学的重要研究内容.数值方法是研究地形效应的重要工具.然而以往关于地形特征对地形效应的影响的研究大多是基于二维简单模型.对三维真实地形特征和地震动放大的关系缺乏详细的研究.为了更好地描述三维地形特征,本文将地形用不同的地形特征因子来描述,并用算法将它们从地形数据中提取出来.从而使地形和放大系数的相关性的研究转换为不同地形特征因子和放大系数的相关性的研究上.本文中,我们选择芦山地区作为研究对象,用算法提取出特征因子山脊线和坡度.它们分别表征了山脊形态和山体的陡峭程度.我们又用谱元法分别模拟三种不同主频Ricker子波的地震波在起伏地表和水平地表模型中的传播,并得到了它们各自的峰值速度(PGV)放大系数.通过分析三个主频的PGV放大系数在山脊线上分布,我们发现放大系数幅值在山脊线上分布不均匀.放大系数较高的地方位于山脊线弯曲或宽度发生变化的附近.我们又统计了三个放大系数在滑动平均坡度上分布,并得到了放大系数均值和坡度的正相关曲线.结果表明坡度和放大系数两者在幅值分布上具有正相关性.
This article uses Spectral-Element Method(SEM)to calculate Peak Ground Velocity amplification factor,and uses ridge line and slope to quantify topographic characters.We use SEM to simulate the 3-D wave propagation in Lushan region.The size of the region is 120×110km horizontally and 50 km in depth.The hypocenter is determined by the 20 th April 2014 Lushan earthquake.To reduce complexity,we choose horizontal layered medium and an explosive source with Ricker wavelet time function.For time function,three dominant frequencies of 0.8,1.2,1.5Hz are chosen in the simulation.In order to separate topographic effects,two models are considered:one model incorporates topography of Lushan area and the other uses flat surface.The surface elevation of the first model is defined based on Gtopo30.Simulated ground motion of each model is obtained and their Peak Ground Velocity(PGV)are computed.The PGV amplification factor is calculated by dividing PGV in flat model by PGV in topographic model.This amplificationfactor is used to quantify the difference of PGV.Next,we extract ridge line and slope,two topographic variables,from the Digital Elevation Model and study their correlation to PGV amplification factor.The first topographic character is ridge line,which represents mountain structure.It is extracted by using CATCH,aprogram for measuring catchment area.A surface point with flow accumulate value larger than a threshold is classified as ridge line point.The second character is slope,which quantifies the steepness of a mountain.It is obtained by a thirdorder finite difference method in a moving 3×3window.We first study the correlation between ridge lines and PGV amplification factor.Then the relationship between amplification factor and slope is analyzed in four selected zones.Additionally,the moving average slope is obtained by averaging slope values of surface points within a moving window.We then count the average value of amplification factor in each average slope interval.This average factor allows us to quantify its correlation with average slope.Firstly,we compare PGV distributions generated by point source with 1.5 Hz dominant frequency in two models:PGV in the flat model shows that large values are found in areas close to the epicenter.In the model with Lushan topography,complex PGV patterns occur in mountainous areas and their values are amplified compared with surrounding areas.Secondly the PGV amplification factor illustrates that amplification factor on mountain tops or ridges has large value.This means PGV is increased at mountain tops.Especially,at some mountain tops,amplification factor could be larger than 1.6.The valley reduces PGV value and the corresponding amplification factor is less than 1.0.In some parts,amplification factor is less than 0.4.Thirdly,we analyze PGV amplification factors of the three frequencies on ridge lines.All of them show uneven distribution,and large values often occur in the following cases:the first case is in the places where ridge lines fork.Often in this case,wide ridge lines develop into narrow branches.The second case is the converge of ridge lines.The ridge lines in this case develop into wider lines.The third case is more complicated.The width of the ridge lines changes with the occurrence of new branches or curved trend in extension. Fourthly, we analyze PGV amplification factor distribution on slope.Observation in four selected zones indicates that PGV amplification factor has positive correlation to the value of slope.To quantify this correlation,we calculate the average amplification factor of three frequencies based on the moving average slope.All three curves show positive correlation.The curve corresponding to 1.5Hz dominant frequency shows the strongest correlation,while results from 0.8Hz show weakest correlation.This phenomena indicates that topographic effect resulted from different dominant frequencies have different degrees of correlation.Especially,in the 1.5Hz case,the average amplification factor increases from 1.03 to 1.38 along the positive direction of moving average slope.Our numerical simulation of three dominant frequencies 0.8,1.2,1.5Hz show that surface irregularity strongly changes PGV values.It is very important to take the effect of real topography on ground motion into account when assessing hazard analysis.To further validation,numerical simulations in different area with more realistic models are needed and other topographic characters should also be taken into account.
引文
Ashford S A,Sitar N,Lysmer J,et al.1997.Topographic effectson the seismic response of steep slopes.Bull.Seismol.Soc.Amer.,87(3):701-709.
    Bard P Y.1982.Diffracted waves and displacement field over twodimensional elevated topographies.Geophys.J.Int.,71(3):731-760.
    Bouchon M.1973.Effect of topography on surface motion.Bull.Seismol.Soc.Amer.,63(2):615-632.
    Bouchon M,Schultz C A,Toksz M N.1996.Effect of threedimensional topography on seismic motion.J.Geophys.Res.:Solid Earth,101(B3):5835-5846.
    Geli L,Bard P Y,Jullien B.1988.The effect of topography onearthquake ground motion:a review and new results.Bull.Seismol.Soc.Amer.,78(1):42-63.
    Hengl T,Reuter H I.2009.Geomorphometry:concepts,software,applications(Vol.33).Amsterdam:Elsevier.
    Huang R Q,Li W L.2008.Research on development and distributionrules of geohazards induced by Wenchuan Earthquake on 12th May,2008.Chinese Journal of Rock Mechanics and Engineering(inChinese),27(12):2585-2592.
    Komatitsch D,Vilotte J P.1998.The spectral element method:anefficient tool to simulate the seismic response of 2D and 3Dgeological structures.Bull.Seismol.Soc.Amer.,88(2):368-392.
    Komatitsch D,Tromp J.1999.Introduction to the spectral elementmethod for three-dimensional seismic wave propagation.Geophys.J.Int.,139(3):806-822.
    Lee S J,Komatitsch D,Huang B S,et al.2009a.Effects oftopography on seismic-wave propagation:an example fromNorthern Taiwan.Bull.Seismol.Soc.Amer.,99(1):314-325.
    Lee S J,Chan Y C,Komatitsch D,et al.2009b.Effects of realisticsurface topography on seismic ground motion in the Yangminshanregion of Taiwan based upon the spectral-element method andLiDAR DTM.Bull.Seismol.Soc.Amer.,99(2A):681-693.
    Li Z L,Zhu Q.2001.Digital Elevation Model(in Chinese).Wuhang:Wuhang University Press.
    Liao Z P,Yang B P,Yuan Y F.1981.Effect of three-dimensionaltopography on earthquake ground motion.Earthq.Eng.Eng.Vib.,1(1):56-77.
    Liu M,Tang G A,Wang C,et al.2007.Analysis of the slopeuncertainty derived from DEMs.Geo-Information Science(inChinese),9(2):65-69.
    Ma S,Archuleta R J,Page M T.2007.Effects of large-scalesurface topography on ground motions,as demonstrated by astudy of the San Gabriel Mountains,Los Angeles,California.Bull.Seismol.Soc.Amer.,97(6):2066-2079.
    Martz L W,Jong E D.1988.CATCH:a FORTRAN program formeasuring catchment area from digital elevation models.Computers&Geosciences,14(5):627-640.
    O′Callaghan J F,Mark D M.1984.The extraction of drainagenetworks from digital elevation data.Computer Vision,Graphics,and Image Processing,28(3):323-344.
    Patera A T.1984.A spectral element method for fluid dynamics:laminar flow in a channel expansion.Journal of ComputationalPhysics,54(3):468-488.
    Spudich P,Hellweg M,Lee W H K.1996.Directional topographicsite response at Tarzana observed in aftershocks of the 1994Northridge,California,earthquake:implications for mainshockmotions.Bull.Seismol.Soc.Amer.,86(1B):S193-S208.
    Tang G A,Yang W Y,Yang X,et al.2003.Some key points inTerrain Variables Deriving from DEMs.Science of Surveyingand Mapping(in Chinese),28(1):28-32.
    Wang G Q,Tang G Q,Jackson C R,et al.2006.Strong groundmotions observed at the UPSAR during the 2003 M6.5 SanSimeon and 2004 M6.0 Parkfield,California,Earthquakes.Bull.Seismol.Soc.Amer.,96(4B):S159-S182.
    Wang Y S,Xu H B,Luo Y H,et al.2009.Study of formationconditions and toss motion program of high landslides inducedby earthquake.Chinese Journal of Rock Mechanics andEngineering(in Chinese),28(11):2360-2368.
    Zeng X F,Luo Y,Han L B,et al.2013.The Lushan Ms7.0earthquake on 20 April 2013:A high-angle thrust event.Chinese J.Geophys.(in Chinese),56(4):1418-1424,doi:10.6038/cjg20130437.
    Zhang D L,Huang P,Zhang X B,et al.2013.Strong groundmotion distribution and simulation based on finite fault model ofLushan 7.0 earthquake on April 20,2013.Seismology andGeology(in Chinese),35(2):423-435.
    Zhang W,Shen Y,Chen X F.2008.Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May2008.Science in China Series D:Earth Sciences,51(12):1673-1682.
    Zhang W,Zhang Z G,Chen X F.2012.Three-dimensional elasticwave numerical modelling in the presence of surface topographyby a collocated-grid finite-difference method on curvilineargrids.Geophys.J.Int.,190(1):358-378.
    Zhou H,Chen X F.2006.A study on frequency responses oftopography with different scales due to incident SH wave.Chinese J.Geophys.(in Chinese),49(1):205-211.
    Zhou H,Gao M T,Yu Y X.2010.A study of topographical effecton SH waves.Progress in Geophys.(in Chinese),25(3):775-782.
    Zhou Q M,Liu X J.2004.Analysis of errors of derived slope andaspect related to DEM data properties.Computers&Geosciences,30(4):369-378.
    黄润秋,李为乐.2008.“5.12”汶川大地震触发地质灾害的发育分布规律研究.岩石力学与工程学报,27(12):2585-2592.
    李志林,朱庆.2001.数字高程模型.武汉:武汉大学出版社.
    刘敏,汤国安,王春等.2007.DEM提取坡度信息的不确定性分析.地球信息科学,9(2):65-69.
    汤国安,杨玮莹,杨昕等.2003.对DEM地形定量因子挖掘中若干问题的探讨.测绘科学,28(1):28-32.
    王运生,徐鸿彪,罗永红等.2009.地震高位滑坡形成条件及抛射运动程式研究.岩石力学与工程学报,28(11):2360-2368.
    曾祥方,罗艳,韩立波等.2013.2013年4月20日四川芦山MS7.0地震:一个高角度逆冲地震.地球物理学报,56(4):1418-1424,doi:10.6038/cjg20130437.
    张冬丽,黄蓓,张献兵等.2013.基于有限断层模型的芦山“4·20”7.0级强烈地震强地面运动特征.地震地质,35(2):423-435.
    周红,陈晓非.2006.不同尺度地形的SH波频率域响应特征研究.地球物理学报,49(1):205-211.
    周红,高孟潭,俞言祥.2010.SH波地形效应特征的研究.地球物理学进展,25(3):775-782.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心