利用虚拟井提高相控随机建模中地质约束的原理和方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
现有储层建模过程中,往往是通过井点数据进行基于地质统计学的空间插值与模拟,即从数学认识到地质认识,这种仅仅单一依靠变量空间相关性的数学统计,难以将地质学家的认识反映到最终的地质模型当中。针对这一问题,提出了相控随机建模中利用虚拟井提高地质约束的方法。首先是在对区域整体地质认识的基础上,设定反映全区非均质特征的变差函数模型,利用克里金算法分析估计方差的分布特征,挑选估计方差分布较大的区域作为插入虚拟井的备选区,同时考虑局部的地质认识确定具体的虚拟井位置。其次利用波阻抗地震属性与孔隙度的相关关系给虚拟井赋值,然后再将虚拟井作为"硬数据"再次利用给定的变差函数模型进行克里金插值,再次挑选方差分布大的区域并设置相应的虚拟井。依次迭代以上步骤直到全区克里金估计方差分布平稳且均匀。最后利用已知井点和虚拟井点数据拟合变差函数进行属性建模,这样就将地质分析所得到的关于研究区的非均质特征体现在了后期的储层属性的建模当中。应用上述方法,以渤南盆地B油田Es4-23小层进行了相控储层的属性随机建模,实例结果表明,该方法能够有效提高模型精度,得到的模型更符合地质实际。最后对模拟结果的准确性进行了分析,讨论了造成模拟误差的原因及降低误差的方法。
The common practice in reservoir modeling is to infer variables' correlation from well data at first,and then to do spatial interpolation and stochastic simulation based on various Geo-statistical methods,which is the process from mathematical statistics to geological understanding.However,geological concepts can not be fully exhibited in the final reservoir model by merely using this kind of variable correlation.A new method is proposed in this paper to enhance the geological constraint by inserting virtual wells during stochastic reservoir modeling.Firstly,set the variogram model that can characterize the heterogeneity characteristics of the whole region based on the comprehensive study of geological background.And then,the distributive characteristics of estimation variance by using Kriging interpolation algorithm are analyzed.After that,larger value areas are selected to interpolate virtual wells.Meanwhile,the geological information is considered to pick the exact locations of virtual wells.Secondly,the property values(mainly porosity and permeability)of the virtual wells are given based on the seismic property of impedance-porosity.Thirdly,the Kriging interpolation is done again using the virtual well as"hard data",and then select relative larger estimation variance value areas and insert virtual wells again.Repeat the above two steps iteratively until the estimation variance distribution of the whole region is uniformly distributed.Finally,fit the variogram parameters based on virtual and existed well data together and then proceed property modeling.In this way,the former geological concepts can be smoothly merged into the process of reservoir modeling.Taking Es4-23 of B oil-field of Bonan Basin as an example,stochastic reservoir modeling is proceeded by adopting the method illustrated above.The result shows that this method enhances reservoir model's accuracy effectively,which is more geologically reasonable.In the end,the accuracy of the outcome model is discussed,and modeling error's causing reasons and the methods of diminishing error are analyzed.
引文
[1]Yu Xinghe,Chen Jianyang,Zhang Zhijie,et al.Stochastic modeling for characteristics of petroleum reservoir constrained by facies[J].Earth Science Frontiers,2005,12(3):237-243.[于兴河,陈建阳,张志杰,等.油气储层相控随机建模技术的约束方法[J].地学前缘,2005,12(3):237-243.]
    [2]Li Shaohua,Zhang Changming,Zhang Shangfeng,et al.Modeling of reservoir petrophysical parameters under the control of sedimentary microfacies[J].Journal of Jianghan Petroleum Institute,2003,25(1):24-26.[李少华,张昌民,张尚锋,等.沉积微相控制下的储层物性参数建模[J].江汉石油学院学报,2003,25(1):24-26.]
    [3]Wu Shenghe,Zhang Yiwei,Li Shujun,et al.Geological constraint principles in reservoir stochastic modeling[J].Journal of China University of Petroleum,2001,25(1):55-58.[吴胜和,张一伟,李恕军,等.提高储层随机建模精度的地质约束原则[J].石油大学学报,2001,25(1):55-58.]
    [4]Sech R P,Jackson M D,Hampson G J.Three-dimensional modeling of a shoreface-shelf parasequence reservoir analog:Part 1.Surface-based modeling to capture high-resolution facies architecture[J].AAPG Bulletin,2009,93(9):1155-1181.
    [5]Wang Yan,Peng Jun,You Liwei,et al.Current status of high resolution sequence stratigraphy in China[J].Natural Gas Geoscience,2005,16(3):352-358.[汪彦,彭军,游李伟,等.中国高分辨率层序地层学的研究现状[J].天然气地球科学,2005,16(3):352-358.]
    [6]Ma Shizhong,Yang Qingyan.The depositional model,3Darchitecture and heterogeneous model of point bar in meandering channels[J].Acta Sedimentologica Sinica,2000,18(2):241-247.[马世忠,杨清彦.曲流点坝沉积模式、三维构形及其非均质模型[J].沉积学报,2000,18(2):241-247.]
    [7]Fan Zheng,Wu Shenghe,Yue Dali,et al.Embedding modeling method for internal architecture of point bar sand body in meandering river reservoir[J].Journal of Chinese University of Petroleum:Edition of Natural Science,2012,36(3):1-6.[范峥,吴胜和,岳大力,等.曲流河点坝内部构型的嵌入式建模方法研究[J].中国石油大学学报:自然科学版,2012,36(3):1-6.]
    [8]Liao Xinwei,Li Shaohua,Zhu Yiqing.Stochastic reservoir modeling restricted by geological conditions[J].Petroleum Exploration and Development,2004,31(supplement):92-94.[廖新维,李少华,朱义清.地质条件约束下的储集层随机建模[J].石油勘探与开发,2004,31(增刊):92-94.]
    [9]Haty.Numerical facies modeling combining deterministic and Stochastic method[C]//The American Association of Petroleum Geologists.AAPG Computer Applications in Geology,No.3.Tulsa,Oklahoma:U.S.A,1995.
    [10]Clayton V Deutsch.Geostatistical Reservoir Modeling[M].New York:Oxford University Press,2002.
    [11]Tang Junwei,Shen Pingping,Huang Pingzhong.Simulating areal distribution of permeability and porosity with fractual interpolation(Ⅱ):Calculating examples[J].Petroleum Exploration and Development,1997,24(4):38-41.[唐俊伟,沈平平,黄平中.分形插值模拟渗透率及孔隙度平面分布(Ⅱ)—计算实例[J].石油勘探与开发,1997,24(4):38-41.]
    [12]Straubhaar J,Renard P,Mariethoz G,et al.An improved parallel multiple-point algorithm using a list approach[J].Mathematical Geosciences,2011,43(3):305-328.
    [13]Wu Shenghe,Li Wenke.Multiple-point geostatistics:Theory,application and perspective[J].Journal of Paleogeography,2005,7(1):137-144.[吴胜和,李文克.多点地质统计学——理论、应用与展望[J].古地理学报,2005,7(1):137-144.]
    [14]Mirowski P W,Tetzlaff D M,Davies R C,et al.Stationarity scores on training images for multipoint geostatistics[J].Mathematical Geosciences,2009,41(4):447-474.
    [15]Guo Kai,Shi Jing,Yang Yong.Study of 3Dvariation function in reservoir stochastic modeling[J].Xinjiang Petroleum Geology,2007,28(2):179-181.[郭凯,史静,杨勇.储集层随机建模中三维变差函数研究[J].新疆石油地质,2007,28(2):179-181.]
    [16]Wu Shenghe,Li Yupeng.Reservoir modeling:Current situation and development prospect[J].Marine Origin Petroleum Geology,2007,12(3):53-60.[吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质,2007,12(3):53-60]
    [17]Hu Xiangyang,Xiong Qihua,Wu Shenghe.A development of reservoir modeling methods[J].Journal of the University of Petroleum:Natural Science Edition,2001 25(1):107-121.[胡向阳,熊琦华,吴胜和.储层建模方法研究进展[J].石油大学学报:自然科学版,2001,25(1):107-112.]
    [18]Wu Shenghe.Reservoir Characterization and Modeling[M].Beijing:Petroleum Industry Press,2010.[吴胜和.储层表征与建模[M].北京:石油工业出版社,2010.]
    [19]Babak O D C.Statistical approach to inverse distance interpolation[J].Stochastic Environmental Research and Risk Assessment,2009,23(5):543-553.
    [20]Yue Youxi,Yang Li.Basic theories and methods of seismic reservoir prediction[J].Natural Gas Geoscience,2009,20(4):563-570.[乐友喜,杨丽.储层地震预测基础理论方法研究[J].天然气地球科学,2009,20(4):563-570.]
    [21]Huang Yunfeng,Yang Zhanlong,Guo Jingyi,et al.Seismic attribute analysis and application in subtle traps exploration[J].Natural Gas Geoscience,2006,17(5):739-742.[黄云峰,杨占龙,郭精义,等.地震属性分析及其在岩性油气藏勘探中的应用[J].天然气地球科学2006,17(5):739-742.]

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心