摘要
笔者提出了基于Metropolis抽样的弹性阻抗随机反演方法,该方法是一种基于蒙特卡洛的非线性反演方法,能够有效地融合测井资料中的高频信息,提高反演结果的分辨率。应用贝叶斯理论框架,首先通过快速傅里叶滑动平均模拟算法(fast Fourier transform-moving average,FFT-MA)和逐渐变形算法(gradual deformation method,GDM)得到基于地质统计学的先验信息,然后用Metropolis抽样算法对后验概率密度进行抽样,得到反演问题的解。其中FFT-MA模拟作为一种高效的频率域模拟方法,结合GDM后,在保持模拟空间结构不变的前提下,可以连续修改储层模型,直至满足实际观测地震记录。数值试验表明:FFT-MA模拟有效地提高了计算效率,融入GDM更新算法,可以保证反演结果有效地收敛,并且反演结果与理论模型吻合较好,具有较高的分辨率,该方法采用两步法反演弹性参数,运算速度较快。
Stochastic inversion of elastic impedance based on Metropolis sampling algorithm is a Monte Carlo based strategy for nonlinear inversion,which can effectively integrate the high-frequency information of well-logging data and have a higher resolution. This method is formulated in the Bayesian framework. Firstly,the priori information can be obtained through Fast Fourier Transform-Moving Average( FFT-MA) and Gradual Deformation Method( GDM). Then Metropolis algorithm is employed so as to obtain an exhaustive characterization of the posteriori probability density.FFT-MA is a kind of efficient simulation method. Combined with GDM,it can constantly modify the reservoir model and keep the spatial structure unchanged until it matches the observed seismic data.According to the numerical calculations,it can be concluded that FFT-MA simulation can reduce the time consumption.Combined with GDM updating algorithm,the inversion results can converge rapidly,and the final results match the model well and have a higher resolution.In addition,this method adopts two-step method to invert elastic parameters,so it improves the computational efficiency to some extent.
引文
[1]Chopra S,Castagna J,Portniaguine O.Seismic resolution and thinbed reflectivity inversion[J].CSEG recorder,2006,31(1):19-25.
[2]Sancevero S S,Remacre A Z,de Souza Portugal R,et al.Comparing deterministic and stochastic seismic inversion for thin-bed reservoir characterization in a turbidite synthetic reference model of Campos Basin,Brazil[J].The Leading Edge,2005,24(11):1168-1172.
[3]Moyen R,Doyen P M.Reservoir connectivity uncertainty from stochastic seismic inversion[C]//2009 SEG Annual Meeting Society of Exploration Geophysicists,2009.
[4]Sams M S,Saussus D.Comparison of uncertainty estimates from deterministic and geostatistical inversion[C]//70thEAGE Conference&Exhibition,2008.
[5]Francis A M.Understanding stochastic inversion:part 1[J].First Break,2006,24(11):69-77.
[6]Francis A M.Understanding stochastic inversion:part 2[J].First Break,2006,24(12):79-84.
[7]Dubrule O.Workshop report:'Uncertainty in reserve estimates'EAGE Conference,Amsterdam[J].Petroleum Geoscience,1996,2(4):351-352.
[8]Connolly P.Elastic impedance[J].The Leading Edge,1999,18(4):438-452.
[9]Whitcombe D N.Elastic impedance normalization[J].Geophysics,2002,67(1):60-62.
[10]Whitcombe D N.Extended elastic impedance for fluid and lithology prediction[J].Geophysics,2002,67(1):63-67.
[11]甘利灯,赵邦六,杜文辉,等.弹性阻抗在流体与岩性预测中的潜力分析[J].石油物探,2005,44(5):504-508.
[12]王保丽,印兴耀,张繁昌.弹性阻抗反演及应用研究[J].地球物理学进展,2005,20(1):89-92.
[13]潘仁芳,宋鹏.叠前弹性反演在苏里格气田的应用[J].物探与化探,2010,34(2):237-241.
[14]张广智,郑静静,印兴耀,等.基于Curvelet变换的角度流体因子提取技术[J].物探与化探,2011,35(4):505-510.
[15]Kjnsberg H,Hauge R,Kolbjrnsen O,et al.Bayesian Monte Carlo method for seismic predrill prospect assessment[J].Geophysics,2010,75(2):O9-O19.
[16]Le Ravalec M,Noetinger B,Hu L Y.The FFT moving average(FFT-MA)generator:An efficient numerical method for generating and conditioning Gaussian simulations[J].Mathematical Geology,2000,32(6):701-723.
[17]Hu L Y.Gradual deformation and iterative calibration of Gaussianrelated stochastic models[J].Mathematical Geology,2000,32(1):87-108.
[18]桂金咏,印兴耀,曹丹平.基于弹性阻抗反演理论的泊松比反演方法研究[J].石油物探,2011,50(5):463-469.
[19]Scales J A,Smith M L,Treitel S.Introductory geophysical inverse theory[M].Samizdat Press,2001.
[20]Oliver D S.Moving averages for Gaussian simulation in two and three dimensions[J].Mathematical Geology,1995,27(8):939-960.
[21]Journel A G,Huijbregts C J.Mining geostatistics[M].Academic press,1978.
[22]Hu L Y,Blanc G.Constraining a reservoir facies model to dynamic data using a gradual deformation method[C]//6thEuropean Conference on the Mathematics of Oil Recovery,1998.
[23]Hu L Y,Le Ravalec M,Blanc G,et al.Reducing uncertainties in production forecasts by constraining geological modeling to dynamic data[C]//SPE Annual Technical Conference and Exhibition,Society of Petroleum Engineers,1999.
[24]Mosegaard K,Tarantola A.Monte Carlo sampling of solutions to inverse problems[J].Journal of Geophysical Research:Solid Earth(1978–2012),1995,100(B7):12431-12447.
[25]Gelman A,Roberts G,Gilks W.Efficient metropolis jumping hules[J].Bayesian statistics,1996,5:599-608.