摘要
利用野外露头、现代沉积和大量岩心以及钻测井资料,以高分辨率层序地层学原理为指导,结合地震和探地雷达,分析了W油田新近系明化镇组明下段河流相层序格架和砂体结构的沉积特征,总结了砂体的发育规模特征,建立了河流相砂体的沉积模式,为海上油田开发及后期调整提供依据和指导。研究表明,渤海海域明化镇组河流相砂体结构划分为堆叠型、侧叠型和孤立型3种类型共7种样式,其中侧叠型又分为紧密型、疏散型和离散型;孤立型又分为下切侵蚀型、孤立河道和决口扇;河道砂体厚度为2.1~15m,平均6.75m;宽度为200~1 225m,平均宽度519m。决口扇砂体厚约2~3m,宽度为150~450m,平均宽度300m。河流相砂体结构受控于湖平面的变化。不同的湖平面变化下发生堆叠型、侧叠型和孤立型规律性的砂体结构变化。
According to the analysis of outcrops,modern sedimentary,well cores,well-logging and ground penetrating radar(GPR),guided by the theory and technology of high-resolution sequence stratigraphy,the high-resolution sequence stratigraphic framework and architecture of sandbody of the Minghuazhen Formation of W oilfield have been investigated.The distribution characteristic of sandbody in sequence stratigraphic framework has been illustrated and fluvial facies models have been set up.It will provide the basis and guidance for oilfield development and the adjustment of the later development of offshore oilfield.We have identified 3classes and 7types of sandbody architecture of Minghuazhen Formation in Bohai bay basin,in which 3classes comprise amalgamated channel complex(ACM),stack channel(SC)and isolated sandbody(IS),and stack channel(SC)is further divided into intimated contact(IC)and evacuated contact(EC)and discreted contact(DC),and isolated sandbody(IS)includes incised channel(IIC),crevasse-splay(CS)and isolated channel(ICH)3types.The study demonstrated that the channel sandbody thickness is 2.1-15 m;the average thickness is 6.75m;the wideness is 200-1225m;and the average wideness is 519 m.The crevassesplay sandbody thickness is 2-3 m;the wideness is 150-450 m;and the average wideness is 300 m.It is demonstrated that the fluvial sandbody architecture was mainly controlled by the change of relative lake level.With the changing of lake level,fluvial sandbody reservoir underwent a complex evolutionary process,including amalgamated channel complex,stack channel and isolated sandbody.
引文
[1]裘怿楠.石油开发地质方法论(一)[J].石油勘探与开发,1996,23(2):43-44.
[2]胡光义,陈飞,孙立春,等.高分辨率层序地层学在河流相油田开发中的应用[J].沉积学报,2013,31(4):600-607.
[3]李阳.河流相储层沉积学表征[J].沉积学报,2007,25(1):48-52.
[4]朱伟林,江文荣,成鑫荣.中国北部近海沉积盆地形成时期的古地形与盆地的含油气性[J].中国海上油气(地质),2000,14(1):9-14.
[5]龚再升.中国近海含油气盆地新构造运动和油气成藏[J].石油与天然气地质,2004,25(2):133-138.
[6]贾承造,何登发,石昕,等.中国油气晚期成藏特征[J].中国科学:D辑,2006,36(5):412-420.
[7]赵春明,胡景,霍春亮,等.双曲流河与辫状河沉积砂体连通模式及开发特征:以渤海地区秦皇岛32-6油田为例[J].油气地质与采收率,2009,16(6):88-91.
[8]Cross T A,Lessenger M A.Sediment volume partitioning:Rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation[G]∥Gradstein F M,Sandvik K O,Milton N J.Sequence Stratigraphy Concepts and Applications.New York:NPF Special Publication,1998:171-195.
[9]Posamentier H W,Allen G P.Siliciclastic Sequence Stratigraphy:Concepts and Applications[M].Tulsa,Oklahoma:SEPM Special Publication,1999:7.
[10]邓宏文,王红亮,王居峰,等.层序地层构成与层序控砂、控藏的自相似特征:以三角洲-浊积扇体系为例[J].石油与天然气地质,2004,25(5):491-495.
[11]Weimer P,Posamentier H W.Silicidastic sequence stratigraphy recent developments and applications[J].American Association of Petroleum Geologists Memoir,1994,58:1-492.
[12]Miall A D.The Geology of Fluvial Deposits:Sedimentary Facies,Basin Analysis,and Petroleum Geology[M].Berlin:Springer-Verlag,1996:75-310.
[13]Ziegler P A,Cloetingh S.Dynamic processes controlling evolution of rifted basins[J].Earth-Science Reviews,2004,64:1-50.
[14]Keumsuk L,Gani M R,McMechan G A,et al.Three-dimensional facies architecture and three-dimensional calcite concretion distributions in a tide-influenced delta front,Wall Creek Member,Frontier Formation,Wyoming[J].American Association of Petroleum Geologists Bulletin,2007,91(2):191-214.
[15]Bridge J S,Alexander J,Collier R E L,et al.Ground-penetrating radar and coring used to study the large-scale structure of point-bar deposits in three dimensions[J].Sedimentology,1995,42:839-852.
[16]Jol H M,Smith D G.Ground penetrating radar of northern lacustrine deltas[J].Canadian Journal of Earth Sciences,1991,28:1939-1947.
[17]Corbeanu R M,Soegaard K,Szerbiak R B,et al.Detailed internal architecture of a fluvial channel sandstone determined from outcrop,cores,and 3-D ground-penetrating radar:Example from the middle Cretaceous Ferron Sandstone,eastcentral Utah[J].American Association of Petroleum Geologists Bulletin,2001,85(9):1583-1608.
[18]Catuneanu O.Principles of Sequence Stratigraphy[M].Amsterdam:Elsevier B V,2006.
[19]Grenfell S E,Grenfell M C,Rowntree K M,et al.Fluvial connectivity and climate:A comparison of channel pattern and process in two climatically contrasting fluvial sedimentary systems in South Africa[J].Geomorphology.doi:10.1016/j.geomorph.2012.05.010.
[20]胡光义,杨希濮,古莉,等.渤海海域黄河口凹陷新近系多油水系统油藏成因分析[J].地学前缘,2012,19(2):95-101.
[21]Amorosi A,Colalongo M L.The linkage between alluvial and coeval nearshore marine successions:Evidence from the Late Quaternary record of the Po River Plain,Italy[M]∥Michael D B,Suasn B M,Suzanne F L.Fluvial SedimentologyⅦSpecial Publication of the International Association of Sedimentologists 35.Oxford,2005:257-275.
[22]Donselaar M E,Overeem I.Connectivity of fluvial point-bar deposits:An example from the Miocene Huesca fluvial fan,Ebro Basin,Spain[J].American Association of Petroleum Geologists Bulletin,2008,92(9):1109-1129.
[23]陈飞,罗平,王训练,等.鄂尔多斯盆地东缘上三叠统延长组砂体结构与层序地层学研究[J].地学前缘,2010,17(1):330-338.
[24]谢庆宾,孙建,陈菁萍,等.苏里格大气田多成因河道砂体的分布模式研究[J].地学前缘,2013,20(2):40-51.
[25]Mark D B,Edward S A,Tyler N.Stratigraphic architecture of fluvial-deltaic sandstones from the Ferron sandstone outcrop,east-central Utah[M]∥Chidsey T C,Adams R D,Morris T H,et al.Analog for Fluvial-Deltaic Reservoir Modeling:Ferron Sandstone of Utah.Tulsa,Oklahoma:American Association of Petroleum Geologists,2004,50:193-210.
[26]Miall A D.Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development[J].American Association of Petroleum Geologists Bulletin,2006,90(7):989-1002.