地球横向不均匀结构对地表以及空间固定点同震重力变化的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文提出一个新算法,用来高精度计算三维不均匀地球模型中地震位错引起的地表以及空间固定点同震重力变化.具体地说,我们首先把实际三维不均匀地球分解成球对称地球模型和对应的横向不均匀增量,分别进行计算,二者对应的计算结果分别称为球对称解和三维响应.由于球对称解可直接利用球对称地球模型位错理论计算得到,本文的目标是计算三维响应即地球的横向不均匀结构对同震重力变化的影响.然后,我们把三维响应再分为震源的响应和地球横向不均匀结构的响应,它们可分别借助对震源函数的扰动以及对平衡方程式的变分求解.本文推导出六个特殊点源位错引起的地表以及空间固定点同震重力变化计算公式(一个垂直走滑位错,两个相互垂直的倾滑位错,三个开裂位错),对这些公式进行适当组合就可以计算任意位置任意类型位错产生的同震重力变化,对应的计算公式同步给出.接着,依据36阶P波速度模型,我们利用岩石试验经验关系式推导出三维S波速度模型,密度模型,位场模型以及重力模型.最后,利用上述三维模型,本文计算出三种典型类型的点源位错产生的同震重力变化,结果显示三维响应与位错类型,震源深度都有关系,其最大响应占球对称解的0.5%左右,且在所有影响因素中S波速度模型影响最大.数值结果同时表明,三维响应中震源的响应与地球横向不均匀构造的响应处于同一量级.本文给出的地表和空间固定点同震重力变化计算公式可分别高精度解析地表重力和卫星重力观测数据(GRACE、GOCE等),提高大地测量数据理论解析水平.
We present new formulae to study the co-seismic gravity changes on both the deformed earth surface and the space-fixed point caused by point dislocations buried in a 3-D heterogeneous,spherical earth model.Specifically,first we express the solutions by the sum of unperturbed gravity changes on a spherically symmetric earth model and the effects of earth′s laterally inhomogeneous structures(3-D effect).Because that the unperturbed solutions can be calculated directly using spherical dislocation theory for a layered earth model,the arm of this paper is to calculate the 3-D effects.Then we deliberately decompose the 3-D effects into two contributions: the effect of seismic sources and the effect of earth′s laterally increments,which are obtainable respectively by perturbations of seismic source functions and equilibrium equation.Next,we present formulations for six point seismic sources: one vertical strike-slip,two vertical dip-slips perpendicular to each other,and three tensile openings on three perpendicular planes.A combination of the six dislocations is useful to compute the 3-D effect resulting from an arbitrary seismic source at an arbitrary position,which is also presented in this paper.Then,using the experience relations of rock testing we deduce density model and S-wave velocity model based on 3-D P-wave velocity model(36 degrees).We also deduce potential model and gravity model from the deduced density model.Finally,based on above 3-D models we calculate the co-seismic gravity changes resulting from three types point dislocations.Results show that the maximum 3-D effect on co-seismic gravity changes,which varies concomitantly with the dislocation types,is about 0.5% of the corresponding unperturbed solutions.Among those parameters the effect of S-wave velocity is biggest.For the 3-D effects,our numerical results show that the contributions of effect of earth′s laterally increments are of the same level as those of dislocation source.The formulae presented by this paper can be used to better explain nowadays high accuracy gravity data observed by satellite gravity mission such as GRACE and GOCE,as well as those observed by gravimerty in situ on Earth′s surface.
引文
[1]Friederich W.The S-velocity structure of the east Asianmantle from inversion of shear and surface waveforms.Geophysical Journal International,2003,153:88-102.
    [2]Zhao D.Seismic structure and origin of hotspots and mantleplumes.Earth and Planetary Science Letters,2001,192:251-265.
    [3]Zhao D.Multiscale seismic tomography and mantledynamics.Gonewana Research,2009,15:297-323.
    [4]Montelli R,Nolet G,Dahlen F A,et al.Finite-frequencytomography reveals various plumes in the mantle.Science,2004,303:338-343.
    [5]Maruyama T.Statical elastic dislocations in an infinite andsemi-infinite medium.Bulletin of the Earthquake ResearchInstitute.University of Tokyo,1964,42:289-368.
    [6]Okada Y.Surface deformation due to shear and tensile faultsin a half-space.Bulletin of the Seismological Society ofAmerica,1985,75:1135-1154.
    [7]Okubo S.Potential and gravity changes due to shear andtensile faults in a half-space.Journal of GeophysicalResearch-Solid Earth,1992,97:7137-7144.
    [8]Sun W.Potential and gravity changes caused by dislocationsin spherically symmetric earth models.Bulletin of theEarthquake Research Institute,University of Tokyo,1992,67:89-238.
    [9]Sun W,Okubo S.Surface potential and gravity changes dueto internal dislocations in a spherical earth-I.Theory for apoint dislocation.Geophysical Journal International,1993,114:569-592.
    [10]Sun W,Okubo S.Surface potential and gravity changes due to internal dislocations in a spherical earth—П.Application to a finite fault.Geophysical Journal International,1998,132:79-88.
    [11]Sun W,Okubo S and Vanicek P.Global displacement caused by dislocations in a realistic earth model.Journal of Geophysical Research-Solid Earth,1996,101:8561-8577.
    [12]Sun W,Okubo S and Fu G.Green′s functions of co-seismic strain changes and investigation of effect of earth′s spherical curvature and radial heterogeneity.Geophysical Journal International,2006,167:1273-1291.
    [13]Sun W,Okubo S,Fu G,et al.General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model—applicable to deformed earth surface and space-fixed point.Geophysical Journal International,2009,177:817-833.
    [14]Tanaka Y,Okuno J and Okubo S.A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model(I)—vertical displacement and gravity variation.Geophysical Journal International,2006,164:273-289.
    [15]Tanaka Y,Okuno J and Okubo S.A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model(II)—Horizontal displacement.Geophysical Journal International,2007,170:1031-1052.
    [16]Sun W,Okubo S.Effect of earth′s spherical curvature and radial heterogeneity in dislocation studies—for a point dislocation.Geophysical Research Letters,2002,29(12),46,10.1029/2001GL014497.
    [17]Pollitz F F.Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model.Geophysical Journal International,2003,155:57-78.
    [18]Fu G,Sun W.Surface coseismic gravity changes caused by dislocations in a3-D heterogeneous earth.Geophysical Journal International,2008,172:479-503.
    [19]Molodenskiy S M.The influence of horizontal inhomogeneities in the Mantle on the amplitude of tidal oscillations.Physics of the Solid Earth,1977,13(2):77-80.
    [20]Molodenskiy S M.The effect of lateral heterogeneities upon the tides.BIM.Fevrier,1980,80:4833-4850.
    [21]Molodenskiy S M,Kramer M V.The influence of large-scale horizontal inhomogeneities in the Mantle on earth tides.Earth Physics,1980,16(1):1-11.
    [22]周新,孙文科,付广裕.重力卫星GRACE检测出2010年智利M w 8.8地震的同震重力变化.地球物理学报,2011,54(7):1745-1749.Zhou X,Sun W and Fu G.Gravity satellite GRACE detects coseismic gravity changes caused by2010Chile Mw8.8earthquake.Chinese Journal Geophysical(in Chinese),2011,54(7):1745-1749.
    [23]王武星,石耀霖,顾国华等.GRACE卫星观测到的与汶川M s 8.0地震有关的重力变化.地球物理学报,2010,53(8):1767-1777.Wang W,Shi Y,Gu G,et al.Gravity changes associated with the Ms8.0Wenchuan earthquake detected by GRACE.Chinese Journal Geophysical(in Chinese),2010,53(8):1767-1777.
    [24]Dahlen F A.The normal modes of a rotating,elliptical earth.Geophysical Journal Royal Astronomical Society,1968,16,329-367.
    [25]Farrell W E.Deformation of the earth by surface loads.Reviews of Geophysics and Space Physics,1972,10:761-797.
    [26]Takeuchi H,Saito M.Seismic surface waves.Academic Press Inc.,1972.
    [27]Alterman Z,Jarosch H,Pekeris C L.Oscillation of the earth.Proceedings of the Royal Society of London,Ser.A.,1959,252:80-95
    [28]Aki K,Richards P G.Quantitative seismology.Freeman,1980.
    [29]Wang R.Tidal deformations on a rotating,spherically asymmetric,visco-elastic and laterally heterogeneous earth.European University Studies,Earth Sciences,Bd.5,1991.
    [30]Fu G,Sun W.Effects of lateral inhomogeneity in a spherical earth on gravity earth tides.Journal of Geophysical ResearchSolidEarth,2007,112,B06409.
    [31]Jones M N.Spherical harmonics and tensors for classical field theory.Research studies LTD,England,1985.
    [32]Dziewonski A M,Anderson D L.Preliminary reference earth model.Physics of the Earth and Planetary Interiors,1981,25:297-356.
    [33]王新胜,方剑,许厚泽等,华北克拉通岩石圈三维密度结构,地球物理学报,2012,55(4):1154-1160.Wang X.,Fang J,Hsu H,et al.,Density structure of the lithosphere beneath North China Craton.Chinese Journal Geophysical(in Chinese),2012,55(4):1154-1160.
    [34]彭恒初,胡家富,杨海燕等,接收函数反演地壳S波速度结构的有效约束方法,2012,55(4):1168-1178.Peng H,Hu J,Yang H,et al.An effective technique to constrain the non-uniqueness of receiver function inversion.Chinese Journal Geophysical(in Chinese),2012,55(4):1168-1178.
    [35]Karato S I.Importance of inelasticity in the interpretation of seismic tomography.Geophysical Research Letters,1993,20:1623-1626.
    [36]Okubo S,Endo T.Static spheroidal deformation of degree1-consistency relation,stress solution and partials.Geophysical Journal Royal Astronomical Society,1986,86:91-102.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心