岩石中波传播速度频散与衰减
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
速度频散与衰减是地震岩石物理领域一个前沿性问题,它不仅是开展频率域储层及流体预测的关键理论基础,同时也是解决不同地球物理测量方法(地面地震、VSP、测井、超声波岩心观测等)之间数据匹配困难的重要手段。笔者在阐述速度频散和衰减现象基本特征的基础上,详细回顾了Biot模型、喷射流模型、BISQ模型、双孔模型、裂缝-孔隙微结构模型和斑块饱和模型等6种主要速度频散与衰减理论模型的研究进程、原理和限制性,利用示意图直观地描述了这些模型的机制,并给出了它们各自的高低频极限、特征频率和适用条件。同时系统回顾并分析了国内外半个多世纪来速度频散与衰减实验测量技术的发展进程和应用现状,并在实验测量数据的基础上给出了自己对地球物理测量手段、岩石物理模型与频率相关性方面的思考和认识,即有必要将单频带的岩石物理模型拓展到全频带,并基于此将不同频带地球物理手段的测量数据联系起来,实现在同一尺度下的综合应用。
A velocity dispersion and attenuation phenomenon is a frontier subject in seismic rock physics.It is not only a key theoretical fundament for reservoir and fluid prediction in the frequency domain but also a crucial technique to solve the data-matching problem of different geophysical measurements,such as surface seismic method,vertical seismic profiling(VSP),well logging,laboratory ultrasonic core observation etc.Based on elaborating characteristics of this phenomenon,we reviewed in detail the progress in development,principles and limitations of six typical velocity dispersion and attenuation models including Biot,Squirt-flow,Biot-Squirt(BISQ),double-porosity,crack-pore microstructure and patchy saturation models,visually depicted mechanisms of these models using schematic diagrams,and at the same time deduced their respective high-and low-frequency limits,characteristic frequencies and applicable conditions.The paper systematically analyzed the development course and current research status of various experimental techniques adopted both at home and abroad over the past half century,and some thoughts and cognition on the relativity of frequency either with geophysical measurement techniques or with petrophysical models were put forward on the basis of various experimental data.Obviously,it is necessary to extend the applicable frequency of petrophysical models from single frequency to full frequency,which can link various geophysical measured data at different frequency bands together,thus realizing their integrated applications on the same scale.
引文
[1]Müller T M,Gurevich B,Lebedev M.Seismic wave attenuationand dispersion resulting from wave-induced flow in porousrocks:a review[J].Geophysics,2010,75(5):75A147-75A164.
    [2]Mavko G,Nur A.Melt squirt in the asthenosphere[J].Journal ofGeophysical Research,1975,80(11):1444-1448.
    [3]Mavko G,Jizba D.Estimating grain-scale fluid effects on velocitydispersion in rocks[J].Geophysics,1991,56(12):1940-1949.
    [4]Dvorkin J,Nolen-Hoeksema R,Nur A.The squirt-flow mechanism:macroscopic description[J].Geophysics,1994,59:428-438.
    [5]Dvorkin J,Mavko G,Nur A.Squirt flow in fully saturated rocks[J].Geophysics,1995,60(1):97-107.
    [6]Dvorkin J,Nur A.Dynamic poroelasticity:a unified model withthe squirt and the Biot mechanisms[J].Geophysics,1993,58(4):524-533.
    [7]Chapman M,Zatsepin S V,Crampin S.Derivation of a microstruc-tural poroelastic model[J].Geophysical Journal International,2002,151:427-451.
    [8]Chapman M.Frequency-dependent anisotropy due to meso-scalefractures in the presence of equant porosity[J].GeophysicalProspecting,2003,51:369-379.
    [9]Berryman J G,Wang H F.The elastic coefficients of double-po-rosity models for fluid transport in jointed rock[J].Journal ofGeophysical Research,1995,100(B12):24611-24627.
    [10]Müller T M,Gurevich B.One-dimensional random patchy satura-tion model for velocity and attenuation in porous rocks[J].Geo-physics,2004,69(5):1166-1172.
    [11]Harris J M,丛健生,宋延杰,等.共振声谱法低频岩石声学参数测量的实验方案研究[J].测井技术,2003,27(3):177-180.Harris J M,Cong Jiansheng,Song Yanjie,et al.Experimentalstudy on acoustic parameter measurements of rock in low fre-quency with acoustic resonance spectroscopy[J].Well LoggingTechnology,2003,27(3):177-180.
    [12]Batzle M L,Han D H,Hofmann R.Fluid mobility and frequency-dependent seismic velocity:direct measurements[J].Geophysics,2006,71(1):N1-N9.
    [13]巴晶.复杂多孔介质中的地震波传播机理研究[D].北京:清华大学,2008.Ba Jing.Research on the seismic wave propagation in complexporous media[D].Beijing:Tsinghua University,2008.
    [14]杨顶辉,张中杰.Biot和喷射流动耦合作用对各向异性弹性波的影响[J].科学通报,2000,45(12):1333-1340.Yang Dinghui,Zhang Zhongjie.Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves[J].ChineseScience Bulletin,2000,45(23):2130-2138.
    [15]杨宽德,杨顶辉,王书强.基于Biot-Squirt方程的波场模拟[J].地球物理学报,2002,45(6):853-861.Yang Kuande,Yang Dinghui,Wang Shuqiang.Wave-field simula-tion based on the Boit-Squirt equation[J].Chinese Journal of Ge-ophysics,2002,45(6):853-861.
    [16]He T,Zou C,Pei F,et al.Laboratory study of fluid viscosity in-duced ultrasonic velocity dispersion in reservoir sandstones[J].Applied Geophysics,2010,7(2):114-126.
    [17]张元中,楚泽涵,李铭,等.岩石声频散的实验研究及声波速度的外推[J].地球物理学报,2001,44(1):3-11.Zhang Yuanzhong,Chu Zehan,Li Ming,et al.An experimentalstudy of acoustic dispersion of rock and extrapolation of the ve-locity[J].Chinese Journal of Geophysics,2001,44(1):3-11.
    [18]邓继新,史謌,俞军.流体饱和岩石超声速度频散的特性研究[J].北京大学学报:自然科学版,2003,39(6):835-843.Deng Jixin,Shi Ge,Yu Jun.The research of the characteristics of ul-trasonic velocity dispersion in fluid saturated rock[J].Acta Scientia-rum Naturalium Universitatis Pekinensis,2003,39(6):835-843.
    [19]王瑞飞,孙卫,岳湘安,等.低频波在油层中衰减系数预测模型的实验研究[J].石油学报,2005,26(6):90-92.Wang Ruifei,Sun Wei,Yue Xiang’an,et al.Experimental re-search on attenuation coefficient model of low-frequency wave inoil layer[J].Acta Petrolei Sinica,2005,26(6):90-92.
    [20]王炳章,朱晔,王丹.多孔介质的流体机制模型及其频散机理[J].勘探地球物理进展,2008,31(6):405-413.Wang Bingzhang,Zhu Ye,Wang Dan.Fluid mechanism modelsand their velocity dispersions in porous media[J].Progress inExploration Geophysics,2008,31(6):405-413.
    [21]Wang Z,Nur A.Dispersion analysis of acoustic velocities in rocks[J].Journal of the Acoustical Society of America,1990,87(6):2384-2395.
    [22]Mavko G,Mükerji T,Dvorkin J.The rock physics handbook:tools forseismic analysis in porous media[M].Cambridge:Cambridge Univer-sity Press,1998.
    [23]Zener C.Elasticity and anelasticity of metals[M].Chicago:Uni-versity of Chicago Press,1948.
    [24]Sams M S,Neep J P,Worthington M H,et al.The measurementof velocity dispersion and frequency-dependent intrinsic attenuationin sedimentary rocks[J].Geophysics,1997,62(5):1456-1464.
    [25]Chapman M,Liu E,Li X Y.The influence of fluid-sensitive dis-persion and attenuation on AVO analysis[J].Geophysical Jour-nal International,2006,167(1):89-105.
    [26]Wang H Y,Sun S Z.A full-frequency band Kuster-Toksz modeland its application on velocity dispersion analysis[J].SEG Ex-panded Abstracts,2010,29:2522-2526.
    [27]Biot M A.Theory of propagation of elastic waves in a fluid satu-rated porous solid:Ⅰ:low-frequency range:Ⅱ:high-frequencyrange[J].Journal of the Acoustical Society of America,1956,28:168-191.
    [28]King M S,Marsden J R,Dennis J W.Biot dispersion for P-and S-wave velocities in partially-and fully-saturated sandstones[J].Geophysical Prospecting,2000,48(6):1075-1089.
    [29]Parra J O.The transversely isotropic poroelastic wave equationincluding the Biot and the squirt mechanisms:theory and applica-tion[J].Geophysics,1997,62(1):309-318.
    [30]Yang D H,Zhang Z J.Poroelastic wave equation including the Bi-ot/squirt mechanism and the solid/fluid coupling anisotropy[J].Wave Motion,2002,35:223-245.
    [31]Cheng Y F,Yang D H,Yang H Z.Biot/squirt model in viscoelasticporous media[J].Chinese Physical Letter,2002,19(3):445-448.
    [32]Nie J X,Yang D H,Yang H Z.A generalized viscoelastic Biot/squirt model for clay-bearing sandstones in a wide range of per-meability[J].Applied Geophysics,2008,5(4):249-260.
    [33]Barenblatt G I,Zheltov I P,Kochina I N.Basic concepts in the theoryof seepage of homogeneous liquids in fissured rocks/strata[J].Journalof Applied Mathematic Mechanisms,1960,24:1268-1303.
    [34]Arbogast T,Douglas J,Hornung U.Derivation of the double po-rosity model of single phase flow via homogenization theory[J].SIAM J.Math.Anal,1990,21(4):823-836.
    [35]Pride S R,Berryman J G,Harris J M.Seismic attenuation due towave-induced flow[J].Journal of Geophysical Research,2004,109:B01201.
    [36]Ba J,Cao H,Yao F C,et al.Double-porosity rock model andsquirt flow in the laboratory frequency band[J].Applied Geo-physics,2008,5(4):261-276.
    [37]Ba J,Nie J X,Cao H,et al.Mesoscopic fluid flow simulation indouble-porosity rocks[J].Geophysical Research Letter,2008,35:L04303.
    [38]Ba J,Cao H,Yao F C.Pore heterogeneity induces double-porosi-ty in Guang’an sandstone:CPS/SEG International Expositionand Geophysical Forum,Beijing,April 24-27,2009[C].Beijing:Chinese Petroleum Society,2009.
    [39]Ba J,Cao H,Yao F C.Velocity dispersion of P waves in sand-stone and carbonate:double-porosity and local fluid flow theory[J].SEG Expanded Abstracts,2010,29:2557-2563.
    [40]巴晶.双重孔隙介质波传播理论与地震响应实验分析[J].中国科学:物理学,力学,天文学,2010,40(11):1398-1409.Ba Jing.Wave propagation theory in double-porosity medium andexperimental analysis on seismic responses[J].Scientia Sinica:Physica,Mechanica&Astronomica,2010,40(11):1398-1409.
    [41]Ba J,Carcione J M,Nie J X.Biot-Rayleigh theory of wave propa-gation in double-porosity media[J].Journal of Geophysical Re-search,2011,116:B06202.
    [42]Wilson A,Chapman M,Li X Y.Frequency-dependent AVO in-version[J].SEG Expanded Abstracts,2009,28:341-345.
    [43]Wu X,Chapman M,Wilson A,et al.Estimating seismic disper-sion from pre-stack data using frequency-dependent AVO inver-sion[J].SEG Expanded Abstracts,2010,29:425-429.
    [44]吴小羊.基于频谱分析技术的频散AVO反演研究[D].北京:中国地质大学,2010.Wu Xiaoyang.Frequency dependent AVO inversion using spec-tral decomposition techniques[D].Beijing:China University ofGeosciences,2010.
    [45]White J E.Computed seismic speeds and attenuation in rocks withpartial gas saturation[J].Geophysics,1975,40(2):224-232.
    [46]Dutta N C,Seriff A J.On White’s model of attenuation in rocks withpartial gas saturation[J].Geophysics,1979,44(11):1806-1812.
    [47]Dutta N C,OdéH.Attenuation and dispersion of compressionalwaves in fluid-filled porous rocks with partial gas saturation(White model):part I:Biot theory[J].Geophysics,1979,44(11):1777-1788.
    [48]Johnson D L,Plona T J,Kojima H.Probing porous media with firstand second sound:II:acoustic properties of water-saturated porousmedia[J].Journal of Applied Physics,1994,76(1):115-125.
    [49]Müller T M,Toms-Stewart J,Wenzlau F.Velocity-saturation re-lation for partially saturated rocks with fractal pore fluid distri-bution[J].Geophysical Research Letters,2008,35:L09306.
    [50]Lebedev M,Toms-Stewart J,Clennell B,et al.Direct laboratoryobservation of patchy saturation and its effects on ultrasonic ve-locities[J].The Leading Edge,2009,28(1):24-27.
    [51]Gassmann F.Uber die elastizitat proser medien[J].Vier.der Na-tur.Gesellschaft in Zurich,1951,96:1-23.
    [52]Geertsma J,Smit D C.Some aspects of elastic wave propagation influid-saturated porous solids[J].Geophysics,1961,26(2):169-181.
    [53]Johnson D L,Plona T J.Acoustic slow waves and the consolida-tion transition[J].Journal of the Acoustical Society of America,1982,72(2):556-565.
    [54]Hudson J A.Wave speeds and attenuation of elastic waves in ma-terial containing cracks[J].Geophysical Journal of the Royal As-tronomical Society,1981,64(1):133-150.
    [55]Brown R,Korringa J.On the dependence of the elastic propertiesof a porous rock on the compressibility of the pore fluid[J].Geo-physics,1975,40(4):608-616.
    [56]Le Ravalec M,Guéguen Y.High-and low-frequency elastic modulifor a saturated porous/cracked rock:differential self-consistent andporoelastic theories[J].Geophysics,1996,61(4):1080-1094.
    [57]Endres A L,Knight R J.Incorporating pore geometry and fluidpressure communication into modeling the elastic behavior ofporous rocks[J].Geophysics,1997,62(1):106-117.
    [58]Hill R.The elastic behavior of a crystalline aggregate[J].Proceedingsof the Physical Society:Section A,1952,65(5):349-354.
    [59]Kuster G T,Toksz M N.Velocity and attenuation of seismicwaves in two-phase media:part 1:theoretical formulations[J].Geophysics,1974,39(5):587-606.
    [60]Berryman J G.Single-scattering approximations for coefficientsin Biot’s equations of poroelasticity[J].Journal of the AcousticalSociety of America,1992,91(2):551-571.
    [61]Berryman J G.Mixture theories for rock properties∥Ahrens TJ.A handbook of physical constants[M].Washington,D.C.:A-merican Geophysical Union,1995:205-228.
    [62]Krishnamurthi M,Balakrishna S.Attenuation of sound in rocks[J].Geophysics,1957,22(2):268-274.
    [63]King M S,Marsden J R.Velocity dispersion between ultrasonicand seismic frequencies in brine-saturated reservoir sandstones[J].Geophysics,2002,67(1):254-258.
    [64]Toulis W J.Theory of a resonance method to measure the acousticproperties of sediments[J].Geophysics,1956,21(2):299-304.
    [65]Shumway G.A resonant chamber method for sound velocity andattenuation measurements in sediments[J].Geophysics,1956,21(2):305-319.
    [66]Winkler K,Nur A.Pore fluids and seismic attenuation in rocks[J].Geophysical Research Letter,1979,6(1):1-4.
    [67]Winkler K W,Nur A.Seismic attenuation:effects of pore fluidsand frictional-sliding[J].Geophysics,1982,47(1):1-15.
    [68]Murphy W F.Effects of partial water saturation on attenuationin Massillon sandstone and Vycor porous glass[J].Journal of theAcoustical Society of America,1982,71:1458-1468.
    [69]Vo-Thanh D.Effects of fluid viscosity on shear-wave attenuationin saturated sandstones[J].Geophysics,1990,55(6):712-722.
    [70]Vo-Thanh D.Effects of fluid viscosity on shear-wave attenuationin partially saturated sandstones[J].Geophysics,1991,56(8):1252-1258.
    [71]Yin C S,Batzle M L,Smith B J.Effects of partial liquid/gas sat-uration on extensional wave attenuation in Berea Sandstone[J].Geophysical Research Letters,1992,19(13):1399-1402.
    [72]Spencer J W.Stress relaxations at low frequencies in fluid-satu-rated rocks:attenuation and modulus dispersion[J].Journal ofGeophysical Research,1981,86(B3):1803-1812.
    [73]Paffenholitz J,Burkhardt H.Absorption and modulus measure-ments in the seismic frequency and strain range on partially satu-rated sedimentary rocks[J].Journal of Geophysical Research,1989,94(B7):9493-9507.
    [74]Smith B J,Batzle M L,Segalman D J.Low frequency seismic at-tenuation measurements using bonded strain gages:proceeding ofAGU Annual Meeting[C].San Fransisco,[s.n.],1988.
    [75]Batzle M L,Han D H,Castagna J.Seismic frequency measure-ment of velocity and attenuation[J].SEG Expanded Abstracts,1997,16:2030-2033.
    [76]Doyle J D,O’Meara Jr D J,Witterholt E J.The“Gypsy”field re-search program in integrated reservoir characterization[R].SPE24710,1992.
    [77]Brown R L,Seifer D.Velocity dispersion:a tool for characterizingreservoir rocks[J].Geophysics,1997,62(2):477-486.
    [78]Parra J O.Poroelastic model to relate seismic wave attenua-tion and dispersion to permeability anisotropy[J].Geophys-ics,2000,65(1):202-210.
    [79]McDonal F J,Angona F A,Mills R L,et al.Attenuation of shearand compressional wave in Pierre shale[J].Geophysics,1958,23(3):421-439.
    [80]Sun L F,Milkereit B,Schmitt D R.Measuring velocity dispersionand attenuation in the exploration seismic frequency band[J].Geophysics,2009,74(2):WA113-WA122.
    [81]Wang H Y,Sun S Z,Xiao Y J.Full-frequency band velocity pre-diction model and its application on seismic reservoir prediction∥EAGE Extended Abstracts[C].Vienna:EAEG,2011.
    [82]Wood A W.A textbook of sound:Being an account of the physicsof vibrations with special reference to recent theoretical and tech-nical developments[M].New York:The Macmillan Company,1955.
    [83]Wang H Y,Sun S Z.A full-frequency band Kuster-Toksz modeland its application on velocity dispersion analysis[J].SEG Ex-panded Abstracts,2011,30:2522-2526.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心