Vinton dome地区全张量重力异常的解释
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
Vinton dome地区位于美国墨西哥湾,发育着大量的盐丘构造,为油气的储藏创造了有利条件.地震勘探结果在盐丘区域存在一定的发散从而难以准确地确定盐丘的准确范围,难以为钻探工作提供可靠的信息.为了获得准确的盐丘形态,现今大多采用重力与地震数据的联合解释.重力梯度异常相对原始重力异常具有更高的分辨率,Bell Geospace公司于2011-2012年在Vinton地区进行了全张量重力测量.本文推导出重力张量异常进行界面正反演的公式,并通过理论模型试验证明了重力与张量异常联合反演可有有效地提高反演结果的准确性.根据先前地震结果利用实测重力张量异常反演获得了Vinton dome地区盐丘界面的变化,此外还利用密度反演方法圈定出盐丘的具体分布,结果显示两种方法所获得的盐丘顶面位置相一致,从而为下一步的钻探工作提供了有力的保障.
Vinton dome is located at the Gulf of Mexico USA,and develop many dome structures,and create an advantage for gas reserve.Seismic prospecting is hard to ascertain the location of the dome correctly because the seismic wave is diverging,so this method is hard to provide reliable result for drilling.In order to obtain the shape of the dome correctly,we usually used the integrated inversion of gravity and seismic data.Gravity gradient data have higher resolution compared to original gravity data,and Bell Geospace had measured the full tensor gravity data from 2011 to 2012.We derive the relationship between the gravity tensor data and surface,and we proved that the integrated inversion of gravity and tensor data can effectively improve the accuracy of inversion results.Depending on the previous seismic results we obtain the surface of dome using the measured gravity tensor data.Moreover,we also use density inversion to delineate the location of dome,and the results show that the locations obtained by two methods of the dome are consistent,and can provide effective guarantee for next drilling work.
引文
Beiki M.2010.Analytic signals of gravity gradient tensor and their application to estimate source location[J].Geophysics,75(6):159-174.
    Beiki M,Pedersen L B.2010.Eigenvector analysis of gravity gradient tensor to locate geologic bodies[J].Geophysics,75(6):137-149.
    Beiki M,Pedersen L B,Nazi H.2011.Interpretation of aeromagnetic data using eigenvector analysis of pseudo gravity gradient tensor[J].Geophysics,76(3):L1-L10.
    Bell R E,Anderson R,Pratson L.1997.Gravity gradiometry resurfaces[J].The Leading Edge,16(1):55-60.
    Camacho A G,Montesinos F G,Vieira R.2000.Gravity inversion by means of growing bodies[J].Geophysics,65(1),95-101.
    Doll W E,Gamey T J,Beard L P,et al.2006.Airborne vertical magnetic gradient for near-surface applications[J].The Leading Edge,25(1):50-53.
    Gamey T J,Starr T,Doll W E,et al.2004.Initial design and testing of a full-tensor airborne SQUID magnetometer for detection of unexploded ordnance[C].//SEG Expanded Abstracts,798-801.
    Jekeli C.1993.A review of gravity gradiometer survey system data analyses[J].Geophysics,58(4):508-514.
    Ma G Q,Du X J,Li L L.2012.Comparison of the tensor local wavenumber method with the conventional local wavenumber method for interpretation of total tensor data of potential fields[J].Chinese Journal of Geophysics(in Chinese),55(7):2450-2461,doi:10.6038/j.issn.0001-5733.2012.07.029.
    Oruc B.2010a.Depth Estimation of Simple Causative Sources from Gravity Gradient Tensor Invariants and Vertical Component[J].Pure and Applied Geophysics,167(10):1259-1272.
    Oruc B.2010b.Location and depth estimation of point-dipole and line of dipoles using analytic signals of the magnetic gradient tensor and magnitude of vector components[J].Journal of Applied Geophysics.70(1):27-37.
    Schmidt P W,Clark D A.2000.Advantages of measuring the magnetic gradient tensor[J].Preview,85:26-30.
    Schmidt P W,Clark D A.2006.The magnetic gradient tensor:Its properties and uses in source characterization[J].The Leading Edge,25(1):75-78.
    Uieda L,Barbosa V C F.2012.Robust 3D gravity gradient inversion by planting anomalous sources[J].Geophysics,77(4):G55-G66.
    Valentin M,Gwendoline P,Michel D,et al.2007.Tensor deconvolution:A method to locate equivalent sources from full tensor gravity data[J].Geophysics,72(5):161-169
    Wu X,Wang K,Feng W.et al.2011.Method of tensor invariant based on non-full tensor satellite gravity gradients[J].Chinese J.Geophys.(in Chinese).54(4):966-976,doi:10.3969/j.issn.0001-5733.2011.04.01.
    Zhang C Y,Mushayandebvu M F,Reid A B,et al.2000.Euler deconvolution of gravity tensor gradient data[J].Geophysics,65(2):512-520.
    马国庆,杜晓娟,李丽丽.2012.解释位场全张量数据的张量局部波数法及其与常规局部波数法的比较[J]·地球物理学报’55(7):2450-2461,doi:10,6038/j.issn.0001-5733.2012.07.029 .
    吴星,王凯,冯讳,等.2m基于非全张量卫星重力梯度数据的张广,量不变量法[·!].地球物理学报,54(4〉:966-976,doi:10.3969/j.issn.0001-5733.2011.04.011.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心