基于地震波阻抗的预探井随钻井壁稳定预测
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
常规井壁稳定预测方法应用于预探井时,由于资料缺乏及使用条件限制、计算参数误差、运算过程复杂等因素会严重影响其预测效果,针对这些问题提出了一种适用于预探井的随钻井壁稳定预测方法。通过考察波阻抗与孔隙压力、构造地应力、岩石强度之间的定量关系,建立包含波阻抗与井壁稳定力学参数的非线性模型,在此基础上利用神经网络算法识别波阻抗与地层三压力(孔隙压力、坍塌压力与破裂压力)之间的映射关系。通过神经网络分层建模及录井资料实时分析,实际钻进中利用地震反演波阻抗数据随钻预测钻头前方的井壁稳定性,及时优化钻井液密度以控制井壁稳定性。现场预探井的应用结果表明,新方法较之常规技术有效提高了适应性与运算速度,操作流程更为便捷,预测精度能满足工程需求。
When the conventional method of predicting borehole stability is applied to the preliminary prospecting wells, the precision of prediction is often affected severely by the lack of data, limit of applying conditions, error of calculated parameters and complexity of operating courses. This paper presents a method of predicting borehole stability while drilling preliminary prospecting wells and establishes a nonlinear model including wave impedance and borehole stability mechanical parameters by investigating the quantitative relationships between wave impedance and pore pressure, in-situ stress as well as rock strength. Based on the nonlinear model, neural network algorithm is used to identify the relationship between the wave impedance and the three formation pressures(pore pressure, fracture pressure and collapse pressure). Through the establishment of the model by layered neural network and the timely analysis of logging data, the wellbore stability before the bit can be predicted while drilling by using the data of seismic wave impedance. Field application in preliminary prospecting wells shows that the new method has higher adaptability, faster calculation speed, and simpler operational procedure than conventional methods, and its prediction accuracy can meet the requirement of engineering.
引文
[1]Karstad E,Aadnoy B S.Optimization of borehole stability using 3D stress optimizations[R].SPE 97149,2005.
    [2]Hemphill T.Integrated management of the safe operating window:Wellbore stability is more than just fluid density[R].SPE 94732,2005.
    [3]Greenwood J A,Brehm A,Van Oort E,et al.Application of real-time wellbore stability monitoring on a deepwater ERD well[R].SPE92588,2005.
    [4]Nes O M,Fjar E,Tronvoll J,et al.Drilling time reduction through integrated rock mechanics analysis[R].SPE 92531,2005.
    [5]Bradford I D R,Aldred W A,Cook J M,et al.When rock mechanics met drilling:Effective implementation of real-time wellbore stability control[R].SPE 59121,2000.
    [6]金衍,陈勉,张旭东.钻前井壁稳定预测方法的研究[J].石油学报,2001,22(3):96-99.Jin Yan,Chen Mian,Zhang Xudong.Study on prediction for borehole stability before drilling[J].Acta Petrolei Sinica,2001,22(3):96-99.
    [7]金衍,陈勉,杨小奇.利用层速度钻前预测安全泥浆密度窗口[J].岩石力学与工程学报,2004,23(14):2430-2433.Jin Yan,Chen Mian,Yang Xiaoqi.Prediction of safe mud density window by interval velocity before drilling[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(14):2430-2433.
    [8]金衍,陈勉,吴超.探井二开以下地层井壁稳定性钻前预测方法[J].石油勘探与开发,2008,35(6):742-745.Jin Yan,Chen Mian,Wu Chao.Borehole stability prediction before drilling for formations under the second section in an exploration well[J].Petroleum Exploration and Development,2008,35(6):742-745.
    [9]金衍,陈勉.利用地震记录钻前预测井壁稳定性研究[J].石油学报,2004,25(1):89-92.Jin Yan,Chen Mian.Prediction of borehole stability by seismic records[J].Acta Petrolei Sinica,2004,25(1):89-92.
    [10]吴超,陈勉,金衍.井壁稳定实时预测新方法[J].石油勘探与开发,2008,35(1):80-84.Wu Chao,Chen Mian,Jin Yan.Real-time prediction method of borehole stability[J].Petroleum Exploration and Development,2008,35(1):80-84.
    [11]吴超,陈勉,金衍.基于地震属性技术的井壁稳定随钻预测新方法[J].中国石油大学学报:自然科学版,2007,31(6):141-146.Wu Chao,Chen Mian,Jin Yan.The prediction model of borehole stability based on seismic attribute technology[J].Journal of China University of Petroleum:Edition of Natural Science,2007,31(6):141-146.
    [12]Wu Chao,Chen Mian,Jin Yan.A prediction method of bore hole stability based on seismic attribute technology[J].Journal of Petroleum Science and Engineering,2009,65(3/4):208-216.
    [13]李庆忠.论地震约束反演的策略[J].石油地球物理勘探,1998,33(4):423-438.Li Qingzhong.On the strategy of seismic restricted inversion[J].Oil Geophysical Prospecting,1998,33(4):423-438.
    [14]Treitel S,Lines L.Past,present and future of geophysical inversion:A new millennium analysis[J].Geophysics,2001,66(1):21-24.
    [15]樊洪海.地层孔隙压力预测检测新方法研究[D].北京:石油大学,2001.Fan Honghai.Study on calculation and prediction methods of formation pore pressure[D].Beijing:University of Petroleum,2001.
    [16]金衍.井壁稳定预测理论及应用研究[D].北京:石油大学,2001.Jin Yan.Study on predicting method of borehole stability and its application[D].Beijing:University of Petroleum,2001.
    [17]陈勉,金衍,张广清.石油工程岩石力学[M].北京:科学出版社,2008.Chen Mian,Jin Yan,Zhang Guangqing.Rock mechanics in petroleum engineering[M].Beijing:Science Press,2008.
    [18]楼一珊,金业权.岩石力学与石油工程[M].北京:石油工业出版社,2006.Lou Yishan,Jin Yequan.Rock mechanics and petroleum engineering[M].Beijing:Petroleum Industry Press,2006.
    [19]Elanayar S,Shin Y C.Radial basis function neural network for approximation and estimate on of nonlinear stochastic dynamic system[J].IEEE Transactions on Neural Network,1994,4(5):594-604.
    [20]Bors A G,Pitas I.Median radial basis function neural network[J].IEEE Transactions on Neural Network,1996,7(6):1351-1364.
    [21]Robert J,Schilling J,Caroll J.Approximation of nonlinear systems with radial basis function neural network[J].IEEE Transactions on Neural Network,2001,12(1):21-28.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心