摘要
针对大跨空间结构地震响应主动控制,以超磁致伸缩材料为核心元件设计了一种可以应用于大跨空间结构振动主动控制中的超磁致伸缩作动器,制作出了作动器的原型并对其进行了输出性能测试。使用遗传算法对大跨空间结构主动控制作动器的布置位置进行了优化设计,最后进行了优化效果的数值模拟分析。以此验证了超磁致伸缩作动器具有良好的作动效应,利用遗传算法在大大提高结构主动控制优化设计效率时,可以保证实现对结构的整体优化以及作动器能高效、经济地实现对结构进行主动控制的目的。
An actuator with giant magnetostrictive material(GMM) as the main components was designed for active vibration control of large-span spatial structures in earthquake situations.The prototype actuator was produced and the output performance was tested.The genetic algorithm was used to optimize the actuators layout in the large-span spatial structures.Numerical results of the optimization show that the GMM actuator has good vibration control efficiency.The genetic algorithm can greatly raise the effectiveness for the optimal design of the active control of the structures and guarantee the optimization of the overall structure.By optimizing the layout of the actuators,the active control of the structures can be realized effectively and economically.
引文
[1]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
[2]李梅,吕银芳.超磁致伸缩材料及其应用[J].现代电子技术,2005,18:114-117.
[3]方紫剑,王传礼.超磁致伸缩材料的应用现状[J].煤矿机械,2006,27(5):725-726.
[4]张东昱.双层柱面网壳主动控制及其优化研究[D].北京:北京工业大学,2001.
[5]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
[6]雷英杰.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
[7]莫凡芒,孙庆鸿,陈南等.遗传算法在结构振动主动控制中的应用研究[J].噪声与振动控制声与振动控制,2003(2):11-12+16.
[8]王社良,纪庆波,代建波等.基于超磁致伸缩作动杆的结构振动主动控制研究[J].噪声与振动控制,2010(6):23-26+42