摘要
在地震反应分析过程中,提出了一种优化方法以解决Rayleigh阻尼系数计算时选择两阶合理参考频率的难题。该方法是以反应谱理论为基础,以结构位移峰值误差最小为目标函数。将位移反应谱用一阶Taylor级数近似计算,从而将目标函数简化为加权最小二乘法的方程。随后以框架结构为例,讨论了模态个数和阻尼比模型对Rayleigh阻尼系数计算的影响,并与传统方法、最小二乘法及基于多参考振型的加权最小二乘法进行比较。计算结果表明,最小二乘法由于忽略了模态贡献的影响,不是计算Rayleigh阻尼系数的合理方法。当模态个数所包含的累积振型参与质量达90%以上,本文方法所得Rayleigh阻尼系数计算结果稳定,结构动力反应的计算精度高。
During the seismic response analysis,an optimization method is developed to overcome the problem on selection of two reasonable reference frequencies for the calculation of Rayleigh damping coefficients.In the method,based on response spectral analysis,an objective function is established by minimizing an error term of the peak displacement of a structure.After approximating the displacement response spectrum to its first-order Taylor's series,the objective function is simplified as a weighted least squares equation.Then,the effects of both mode numbers and exact damping model on the evaluation of Rayleigh damping coefficients are investigated with a frame structure,and are compared with traditional method,least squares method,weighted least squares method based on multi-reference modes.Numerical results show that the least squares method is not a reasonable method to evaluate Rayleigh damping coefficients due to neglecting the effect of mode contribution.The proposed method would obtain stability Rayleigh damping coefficients when the mode numbers cover accumulated modal participating mass more than 90%,and make dynamic response results accuracy.
引文
[1]柳国环,李宏男,国巍.求解结构地震响应位移输入模型存在的问题及其AMCE实效对策[J].计算力学学报,2009,26(6):862-869.(LIU Guo-huan,LI Hongnan,GUO Wei.Problem inherent in displacement input model for calculating structural responses under earthquake ground motion and an effective solution method called AMCE[J].Chinese Journal of Computational Mechanics,2009,26(6):862-869.(in Chinese))
[2]董军,邓洪洲,王肇民.结构动力分析阻尼模型研究[J].世界地震工程,2000,16(4):63-69.(DONG Jun,DENG Hong-zhou,WANG Zhao-min.Studies on the damping models for structural dynamic time history analysis[J].World Information on Earthquake Engineering,2000,16(4):63-69.(in Chinese))
[3]Enrique L J.A note on classical damping matrices[J].Earthquake Engineering and Structural Dynamics,2008,37(4):615-626.
[4]Adhikari S.Damping modeling using generalized proportional damping[J].Journal of Sound and Vibration,2006,293(1-2):156-170.
[5]Chopra A K.Dynamics of Structures:Theory and Applications to Earthquake Engineering[M].New Jersey:Englewood Cliffs,Prentice-Hall,1995.
[6]楼梦麟,张静.大跨度拱桥地震反应分析中阻尼模型的讨论[J].振动与冲击,2009,28(5):22-26.(LOU Meng-lin,ZHANG Jing.Discussion on damping models for seismic response analysis of long-span bridge[J].Journal of Vibration and Shock,2009,28(5):22-26.(in Chinese))
[7]刘红石.Rayleigh阻尼比例系数的确定[J].噪声与振动控制,1999(6):21-22.(LIU Hong-shi.Determination of rayleigh damping coefficients[J].Noise and Vibration Control,1999(6):21-22.(in Chinese))
[8]刘红石.相对误差与Rayleigh阻尼比例系数的确定[J].湖南工程学院学报,2001,11(3-4):36-38.(LIU Hong-shi.Relative errors and determination of Rayleigh damping scale coefficient[J].Journal of Hunan Institute of Engineering,2001,11(3-4):36-38.(in Chinese))
[9]Yang D B,Zhang Y G,Wu J Z.Computation of Rayleigh damping coefficients in seismic time-history analysis of spatial structures[J].Journal of the International Association for Shell and Spatial Structures,2010,51(2):125-135.
[10]杨大彬,张毅刚,吴金志.基于多参考振型的Rayleigh阻尼系数计算方法在单层柱面网壳中的应用[J].空间结构,2011,17(3):8-15.(YANG Da-bin,ZHANG Yi-gang,WU Jin-zhi.Application of the multiple reference modes based computation method of Rayleigh damping coefficients in single-layer cylindrical latticed shell[J].Spatial Structures,2011,17(3):8-15.(in Chinese))
[11]潘旦光.直接确定Rayleigh阻尼系数的一种优化方法[J].工程力学,2013,30(9):16-21.(PAN Danguang.An optimization method for the direct determination of Rayleigh damping coefficients[J].Engineering Mechanics,2013,30(9):16-21.(in Chinese))
[12]Newmark N M,Hall W J.Earthquake Spectra and Design,Earthquake Engineering Research Institute[R].California:Berkeley,1982.