中国规范钢筋混凝土抗震墙延性和位移角的量化研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
分析了中国、美国、新西兰规范三种不同钢筋混凝土剪力墙约束箍筋设计方法的内在机理,讨论了三国规范存在的问题。结果表明,中国规范仅按照轴压比判断是否加约束箍筋的设计方法不合理,使同一抗震等级剪力墙的位移和延性指标不平衡。美国和新西兰规范是基于位移和延性的设计方法,但其没有考虑剪力墙钢筋拉断的受拉破坏,导致混凝土高度很小时高估了位移和延性能力,而实际位移和延性不能满足要求。提出了基于修正后的美新规范位移角和延性计算方法,评估了现行中国规范不同的抗震等级、烈度下剪力墙具有的位移和延性能力。按照中国规范设计剪跨比为4的剪力墙在抗震等级为一级(9度)、一级(6、7、8度)、二三级时,延性指标平均值分别能达到5.1、3.6和2.6,位移角指标能达到1/81、1/129和1/175。
The theories of confining stirrup design methods for reinforced concrete( RC) walls in Chinese code GB50011-2010,American code ACI 318-11 and New Zealand code NZS 3101: 2006 are analyzed. The problems of three design methods are discussed. The drift capacity and ductility of RC walls designed according to GB 50011-2010 in different seismic design levels are evaluated. Results show that Chinese design method,in which the confining stirrup requirement is only dependent on axial load ratio,is unreasonable,which would make the drift capacity and ductility of RC walls different. ACI and NZS methods are displacement-based and ductility-based,respectively. However,they both do not consider the failure mode of bar fracture and overestimate the drift capacity and ductility in some cases. For walls with aspect ratio 4 designed in accordance with Seismic Grade I( Intensity 9),Grade I( Intensity 6,7 or 8),and Grade II or III of GB 50011-2010,the ductility can be 5. 1,3. 6 and 2. 6,respectively and the drift can be 1 /81,1 /129 and 1 /175,respectively.
引文
[1]黄志华,吕西林,周颖.钢筋混凝土剪力墙的变形能力及基于性能的抗震设计[J].地震工程与工程振动,2009,29(5):86-93.HUANG Zhihua,LU Xilin,ZHOU Ying.Deformation capacity and performance-based seismic design for reinforced concrete shear walls[J].Journal of Earthquake Engineering and Engineering Vibration,2009,29(5):86-93.(in Chinese)
    [2]劳晓春,韩小雷,黄超.基于中国规范的剪力墙构件性能指标限值初探[J].地震工程与工程振动,2010,30(4):45-50.LAO Xiaochun,HAN Xiaolei,HUANG Chao.Research on performance index value for shear wall components based on Chinese codes[J].Journal of Earthquake Engineering and Engineering Vibration,2010,30(4):45-50.(in Chinese)
    [3]李响,梁兴文.高性能混凝土剪力墙恢复力模型研究[J].地震工程与工程振动,2010,30(5):43-48.LI Xiang,LIANG Xingwen.Study on restoring force model of high-performance concrete shear walls[J].Journal of Earthquake Engineering and Engineering Vibration,2010,30(5):43-48.(in Chinese)
    [4]Oh Y H,Han S W,Lee L H.Effect of boundary element details on the seismic deformation capacity of structural walls[J].Earthquake Engineering and Structural Dynamics,2002,31(8):1583-1602.
    [5]Kuang J S,Ho Y B.Seismic behaviour and ductility of squat reinforced concrete shear walls with nonseismic detailing[J].ACI Structural Journal,2008,105(2):225-231.
    [6]Dazio A,Beyer K,and Bachmann H.Quasi-static cyclic tests and plastic hinge analysis of RC structural walls[J].Engineering Structures,2009,31(7):1556-1571.
    [7]GB 50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.GB 50011-2010 Code for Seismic Design of Buildings[S].Beijing:China Architecture&Building Press,2010.(in Chinese)
    [8]Building Code Requirements for Structural Concrete(ACI 318-11)and Commentary(ACI 318R-08)[S].American Concrete Institute,Farmington Hill,Mi,2011.
    [9]Wallace J,Orakcal K.ACI 318-99 provisions for seismic design of structural walls[J].ACI Structural Journal,2002,99(4):499-508.
    [10]SANZ,Concrete Structures Standard,NZS3101:2006,Standards Association Wellington,NZ.
    [11]Paulay T,Priestley M J N.Seismic design of reinforced concrete and masonry buildings[M].New York(NY):John Wiley&Sons,1992:473-474.
    [12]Moehle J P.Displacement-based design of RC structures subjected to earthquakes[J].Earthquake Spectra,EERI,1992,8(3):403-428.
    [13]GB 50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.GB 50010-2010 Code for Design of Concrete Structures[S].Beijing:China Architecture&Building Press,2010.(in Chinese)
    [14]Wood S L.Minimum tensile reinforcement requirements in walls[J].ACI Structural Journal,1989,86(5):582-591.
    [15]Su R K L,Wong S M.Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio[J].Engineering Structures,2007,29(8):1957-1965.
    [16]Cardenas A E,Hanson J M,Corley W G,Hognestad E.Design provisions for shear walls[J].ACI Journal Proceeding,1973,70(3):221-230.
    [17]Elnady M.Seismic rehabilitation of RC structural walls[D].Ph D thesis,Montreal,Mc Master University,2008.
    [18]邓开来,潘鹏,石苑苑,等.老旧住宅中低配筋剪力墙抗震性能试验研究[J].土木工程学报,2012,45(S1):213-217.DENG Kailai,PAN Peng,SHI Yuanyuan,et al.Quasi-static test of reinforced concrete shear wall with low concrete strength and reinforcement ratio[J].China Civil Engineering Journal,2012,45(S1):213-217.(in Chinese)
    [19]章红梅,吕西林,杨雪平,等.边缘构件配箍对钢筋混凝土剪力墙抗震性能影响的研究[J].结构工程师,2008,24(5):100-104.ZHANG Hongmei,LU Xilin,YANG Xueping,et al.Influence of the boundary stirrup on the seismic behavior of reinforced concrete shear walls[J].Structural Engineers,2008.24(5):100-104.(in Chinese)
    [20]Priestley N J M,Kowalsky M J.Aspects of drift and ductile capacity of rectangular cantilever structural walls[J].Bulletin NZSEE,1998,31(4):246-259.
    [21]Paulay T,Priestley M J N.Stability of ductile structural walls[J].ACI Structural Journal,1993,90(4):385-392.
    [22]JGJ 3-2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.JGJ 3-2010 Technical Specification for Concrete Structures of Tall Building[S].Beijing:China Architecture&Building Press,2010.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心