摘要
为了提出一种适合于岩土地震数值模拟的土体本构模型,基于土体动应力-应变关系的Hardin曲线及其在非等幅往返荷载下的Pyke修正,采用von Mises准则在偏应力平面上构造边界面,以反向加载点和当前应力点的连线在边界面上投影的比例作为硬化参数,推导了塑性硬化模量并给出该边界面本构的具体增量表述。在有限元软件ADINA中通过自定义材料的二次开发实现了该本构模型,并利用动三轴试验对该本构模型进行了验证。数值模拟与试验结果的对比表明,本构模型能如实反映土体的应力-应变关系。针对实际工程场地的地震反应,应用边界面本构模型在ADINA中进行了二维数值模拟,与SHAKE91的计算结果进行了对比,说明了该本构模型应用于岩土地震工程问题的合理性。
This paper proposes a soil constitutive model suitable for geotechnical earthquake simulation. The Hardin curve of soil dynamic stress-strain relationship and its Pyke's modification for irregular cyclic loading are used. The boundary surface is established on the deviatoric stress plane according to von Mises criterion. After connecting reverse loading point and the current stress point for boundary surface projection, a plastic hardening modulus is derived regarding projection ratio as hardening parameter. The specific increment formulation is given. This constitutive model is implemented by customizing the secondary development of materials in finite element method software ADINA and verified with dynamic triaxial test. The comparison of numerical simulation and test results illustrates that this constitutive model can truthfully reflect the stress-strain relation of soil. For seismic responses of a site, a 2D numerical simulation is executed using the boundary surface constitutive model in ADINA. The results are compared with those of SHAKE91 to illustrate the rationality of adopting this constitutive model to geotechnical earthquake engineering problems.
引文
[1]DAVID M POTTS,LIDIJA ZDRAVKOVIC(英).岩土工程有限元分析:理论[M].周建,谢新宇,胡敏云等译.北京:科学出版社,2010.
[2]张克绪,谢君斐.土动力学[M].北京:地震出版社,1989.
[3]李广信.高等土力学[M].北京;清华大学出版社,2004.
[4]庄海洋,陈国兴,梁艳仙,等.土体动非线性黏弹性模型及其ABAQUS软件的实现[J].岩土力学,2007,28(3):436-442.ZHUANG Hai-yang,CHEN Guo-xing,LIANG Yan-xian,et al.A developed dynamic viscoelastic constitutive relations of soil and implemented by ABAQUS software[J].Rock and Soil Mechanics,2007,28(3):436-442.
[5]张如林,楼梦麟.基于达维坚科夫骨架曲线的软土非线性动力本构模型研究[J].岩土力学,2012,33(9):2588-2594.ZHANG Ru-lin,LOU Meng-lin.Study of nonlinear dynamic constitutive model of soft soil based on Davidenkov skeleton curve[J].Rock and Soil Mechanics,2012,33(9):2588-2594.
[6]陈惠发(美).弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
[7]MROZ Z,ZIENKIEWICZOC.Uniform formulation of constitutive equation for clay and sands[C]//DESAI C S,GALLAGHER R H.Mechanics of Engineering Materials.London:John Willey and Son,1984:78-95.
[8]IWAN W D.On a class of models for the yielding behavior of continuous and composite systems[J].Journal of Applied Mechanics,1967,34(3):612-624.
[9]PRECVOST J H.Mathematical modeling of monotonic and cyclic undrained clay behavior[J].International Journal for Numerical&Analytical Methods in Geomethanics,1977,1(2):195-216.
[10]DAFALIAS Y F,HERRMANN L R.A boundary surface soil plastic model[C]//Pnde G N,ZIENKIEWICZOC.Proc.Int.Symp.Soils under Cyclic Trans.Load.Rotterdam:Balkema Publ.,1980:335-356.
[11]DAFALIAS Y F,POPOV E P.Plastic internal variables formalism of cyclic plasticity[J].Applied Mechanics,1976,98(4):645-650.
[12]KRIEG R D.A practical two surface plastic theory[J].Journal of Applied Mechanics,AMCE,1975,42(3):641-646.
[13]HARDIN B O,DRNEVICH V P.Shear modulus and damping in soils:Design equations and curves[J].Journal of Geotechnical Engineering,ASCE,1972,98(7):667-692.
[14]PYKE R M.Nonlinear soil models for irregular cyclic loading[J].Journal of Geotechnical Engineering,ASCE,1979,105(6):715-726.
[15]陈惠发(美).混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004.
[16]ADINA.Adina theory and modeling guide[M].Massachusetts:ADINA R&D,Inc.,2006.
[17]沈珠江.砂土动力变形计算参数的室内测定[J].水利水运科学研究,1984,2(2):10-17.