地下洞室衬砌外壁形状变异性对内壁动应力集中因子峰值的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用波函数展开法及边界离散的方法给出平面SH波入射下地下衬砌洞室(衬砌内壁为圆形、外壁为任意形状)动应力集中的半解析解,利用蒙特卡罗方法随机模拟产生30组半径变异系数为0.05的衬砌外壁形状样本,通过对衬砌内壁动应力集中因子(DSCF)峰值的统计分析,研究衬砌外壁形状变异性对内壁DSCF峰值的影响。研究表明:洞室衬砌外壁形状变异性对内壁DSCF的峰值大小有重要影响,柔性衬砌情况的影响远大于刚性衬砌情况的影响。柔性衬砌和刚性衬砌样本峰值的最大值比圆形洞室峰值分别增大178.15%和31.98%;柔性衬砌和刚性衬砌样本峰值的变异系数分别可达衬砌外壁半径变异系数的9.84和2.57倍。
A semi-analytical solution for dynamic stress concentration factors(DSCF) of underground lined cavity in half-space for incident plane SH waves is presented using wave functions expansion method combined with boundary discrete method. The cavity is with circular inner wall and arbitrary-shape outer wall of the lining. The Monte Carlo method is also used to randomly generate 30 samples of variation coefficient of 0.05 for outer-wall shape of lining,and the effect of outer-wall shape variation of lining on DSCF peak values are studied by statistical analysis. It is shown that,the outer-wall shape variation of lining has significant effect on the inner-wall DSCF peak values,with larger effect for flexible lining than stiff lining. The maxima of DSCF peak values for flexible and stiff lining are increased by 178.15% and 31.98%,respectively,compared with the case of a completely circular linings. The variation coefficients of DSCF peal values for flexible and stiff lining can be up to 9.84 and 2.57 times of those of outer-wall radius of the lining.
引文
[1]PAO Y H,MOW C C.Diffraction of elastic waves and dynamic stress concentrations[M].New York:Crane Russak and Company,Inc.,1973:73–91.
    [2]LEE V W,TRIFUNAC M D.Response of tunnels to incident SH-waves[J].Journal of Engineering Mechanics Division,1979,105(4):643–659.
    [3]LIANG J W,LUO H,LEE V W.Diffraction of plane SH waves by a semi-circular cavity in half-space[J].Earthquake Science,2010,23(1):5–12
    [4]LUO H,LEE V W,LIANG J W.Anti-plane(SH)waves diffraction by an underground semi-circular cavity:analytical solution[J].Earthquake Engineering and Engineering Vibration,2010,9(3):385–396.
    [5]王建华,王卫东,周香莲.饱和土中任意形状衬砌对弹性波的散射[C]//中国土木工程学会第九届土力学及岩土工程学术会议论文集.北京:[s.n.],2003:1 057–1 060.(WANG Jianhua,WANG Weidong,ZHOU Xianglian.Scattering around a liner of arbitrary shape in saturated soil under elastic waves[C]//The Ninth National Conference on Soil Mechanics and Geotechnical Engineering.Beijing:[s.n.],2003:1 057–1 060.(in Chinese))
    [6]姜领发,陈善雄,于忠久.饱和土中任意形状衬砌对稳态压缩波的散射[J].岩土力学,2009,30(10):3 063–3 070.(JIANG Lingfa,CHEN Shanxiong,YU Zhongjiu.Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J].Rock and Soil Mechanics,2009,30(10):3 063–3 070.(in Chinese))
    [7]KOBAYASHI S,NISHIMURA N.Analysis of dynamic soil-structure interactions by boundary integral equation method[M].Paris:Pluraris,1983:353–362.
    [8]MANOLIS G D,BESKOS D E.Boundary element methods in elastodynamics[M].London:Unwin Hyman,1988:12–96.
    [9]梁建文,尤红兵.层状半空间中洞室对入射平面P波的放大作用[J].地震工程与工程振动,2005,25(2):16–24.(LIANG Jianwen,YOU Hongbing.Amplification of plane P waves by a cavity in a layered half-space[J].Earthquake Engineering and Engineering Vibration,2005,25(2):16–24.(in Chinese))
    [10]尤红兵,梁建文.层状半空间中洞室对入射平面SV波的散射[J].岩土力学,2006,27(3):383–288.(YOU Hongbing,LIANG Jianwen.Scattering of plane SV waves by a cavity in a layered half-space[J].Rock and Soil Mechanics,2006,27(3):383–288.(in Chinese))
    [11]梁建文,巴振宁.层状半空间中洞室对平面SH波的放大作用.地震工程与工程振动,2012,32(2):14–24.(LIANG Jianwen,BA Zhenning.Amplification of plane SH waves by a cavity in a layered half-space[J].Earthquake Engineering and Engineering Vibration,2012,32(2):14–24.(in Chinese))
    [12]LUCO J E,DE BARROS F C P.Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space[J].Earthquake Engineering and Structural Dynamics,1994,23:321–340.
    [13]LIANG J W,LIU Z X.Diffraction of plane SV waves by a cavity in poroelastic half-space[J].Earthquake Engineering and Engineering Vibration,2009,8(1):29–46.
    [14]MOEEN-VAZIRI N,TRIFUNAC M D.Scattering and diffraction of plane SH-waves by two-dimensional inhomogeneities[J].Soil Dynamics and Earthquake Engineering,1988,7(4):179–188.
    [15]ROBERT C P,CASELLA G.蒙特卡罗统计方法[M].2版.北京:世界图书出版公司,2009:35–204.(ROBERT C P,CASELLA G.Monte Carlo statistical method[M].2nd ed.Beijing:World Publishing Corporation,2009:35–204.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心