煤层气地面井压裂-井下长钻孔抽采技术效果分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对单一地面井或井下钻孔抽采瓦斯效果不理想的问题,提出了在地面井煤层压裂增渗的同时,结合井下长钻孔部署的局部范围卸压增渗的方法,使煤层渗透性得到双重提高,进而取得较好的抽采效果。评价了人工裂缝监测技术对地面井煤层压裂的裂缝形态和有效半径,考察了试验区瓦斯含量、百米钻孔瓦斯流量、瓦斯抽采量及浓度等相关参数。结果表明:地面井压裂影响范围呈椭圆区间,长半轴一般为70~100 m,短半轴20~30 m;压裂影响区瓦斯抽采量及浓度明显提高,但随着时间的推移压裂效果逐渐降低。
According to the problem of single surface well or a borehole in underground mine applied to drain the gas was irrational in effect,the paper proposed that while the fracturing and permeability improvement conducted in the coalbed methane surface well,in combination with the gas pre-drainage technology with long distance boreholes set for the pressure releasing and permeability improvement in a local scope,thus the seam permeability was doubly improved and a considerable drainage effect was realized. The micro seismic,underground mine observation method and other crack manual monitoring and measuring technology were applied to evaluate the crack form and effective radial of the surface well fracturing.The gas content of the test zone,gas flow of 100 m borehole,gas drainage quantity,gas concentration,outburst danger index and other related parameters were investigated.The results showed that the influence scope of the surface well fracturing was in an elliptic interval,a major semi-axis was 70 ~ 100 m generally,minor semi-axis was 20 ~ 30 m and the crack form was vertical crack mainly.The gas drainage value and concentration from the fracturing affected zone were obviously improved.After the fracturing conducted,the percentage of the high outburst prevention index was highly reduced,but the fracturing effect would be steadily reduced with the time passed.
引文
[1]申宝宏,刘见中,赵路正.煤矿区煤层气产业化发展现状与前景[J].煤炭科学技术,2011,39(1):6-10.
    [2]袁亮,薛俊华,张农,等.煤层气抽采和煤与瓦斯共采关键技术现状与展望[J].煤炭科学技术,2013,41(9):6-11.
    [3]贺天才,王保玉,田永东.晋城矿区煤与煤层气共采研究进展及急需研究的基本问题[J].煤炭学报,2014,39(9):1779-1785.
    [4]李国富,何辉,刘刚,等.晋城矿区煤层气三区联动立体抽采模式[J].煤炭科学技术,2012,40(10):7-11.
    [5]张遂安.采煤采气一体化理论与实践[J].中国煤层气,2006,3(4):14-16.
    [6]张志义.晋煤集团高瓦斯矿井煤层气抽采及利用效果[J].煤炭技术,2008,27(11):91-92.
    [7]白建平.微地震法在煤层气井人工裂缝监测中的应用[J].中国煤层气,2006,3(3):34-36.
    [8]单学军,张士诚,张遂安,等.华北地区煤层气井压裂裂缝监测及其扩展规律[J].煤炭地质与勘探,2005,33(5):25-28.
    [9]朱宝存,唐书恒,张佳赞.煤岩与顶底板岩石力学性质对煤储层压裂的影响[J].煤炭学报,2009,34(6):756-760.
    [10]冯晴,吴财芳,雷波.沁水盆地煤岩力学特征及其压裂裂缝的控制[J].煤炭科学技术,2011,39(3):101-103.
    [11]赵阳升,杨栋,胡耀青,等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2014,39(9):1779-1785.
    [12]李云波,张玉贵,张子敏,等.构造煤瓦斯解吸初期特征实验研究[J].煤炭学报,2013,38(1):96-98.
    [13]傅雪海,李升,于景邨,等.煤层气井排采过程中煤储层水系统的动态监测[J].煤炭学报,2014,39(1):26-31.
    [14]郭晨,秦勇,易同生,等.黔西肥田区块地下水动力条件与煤层气有序开发[J].煤炭学报,2014,39(1):115-123.
    [15]张双斌,苏现波,郭红玉,等.煤层气井排采过程中压裂裂缝导流能力的伤害与控制[J].煤炭学报,2014,39(1):124-128.
    [16]陈刚,秦勇,杨青,等.不同煤阶煤储层应力敏感性差异及其对煤层气产出的影响[J].煤炭学报,2014,39(3):504-509.
    [17]李永玲,刘应书.低浓度含氧煤层气吸附富集过程中吸附塔高径比的影响规律[J].煤炭学报,2014,39(3):492-497.
    [18]孟召平,张纪星,刘贺,等.考虑应力敏感性的煤层气井产能模型及应用分析[J].煤炭学报,2014,39(4):593-599.
    [19]琚宜文,李清光,颜志丰,等.煤层气成因类型及其地球化学研究进展[J].煤炭学报,2014,39(5):806-815.
    [20]彭龙仕,乔兰,龚敏,等.煤层气井多层合采产能影响因素[J].煤炭学报,2014,39(10):2060-2067.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心