薄钢板剪力墙结构滞回行为研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究薄钢板剪力墙结构的滞回行为,采用通用有限元分析软件ABAQUS建立其非线性有限元分析模型,并对计算平台、单元选取、网格划分、初始缺陷施加及材料循环本构模型等予以介绍。结合国内外已有的钢板剪力墙拟静力试验,验证了提出的分析模型能够准确地模拟由于平面外变形、局部屈曲、塑性应变累积等因素造成的承载力和刚度退化、曲线捏拢等,并预测了结构的破坏形态。在此基础上,结合试验结果以及有限元分析结果对钢板剪力墙的滞回性能、承载性能、耗能行为、损伤退化特征以及断裂性能进行分析。试验和有限元分析结果均表明:不同的钢板剪力墙局部构造会影响结构的滞回性能、耗能能力、损伤退化行为以及承载性能;开竖缝钢板剪力墙能够显著提高结构的耗能能力,改善曲线捏拢情况,但其承载力有较大降低;加劲钢板剪力墙承载性能有所提高,但其荷载-位移滞回曲线仍然存在明显的捏拢现象,因此在实际工程中需要对加劲肋的尺寸进行优化,使其能够提供足够的约束,有效提高结构抗震性能。
In order to study the hysteretic performance of thin steel plate shear wall structure,the finite element software ABAQUS was used for establishing a nonlinear finite element analysis model. The computing platform,element selection,meshing method,the initial imperfection,cyclic constitutive model of steel and so on were described in details. The results of numerical simulation were compared with typical experimental results. The proposed model was proved to accurately simulate and predict the capacity and stiffness degradation caused by out-ofplane deformation,local buckling and plastic strain accumulation,pinching phenomenon,and the failure modes.Based on the proposecl model,hysteretic behaviors,bearing performance,energy dissipation capacity,damage and degradation characteristics and fracture properties were analyzed comprehensively,combined with experimental results and numerical simulation results. Test and finite element analysis results show that: different local changes would affect the behaviors of steel plate shear wall structure,including hysteretic curves,energy dissipation capacity,damage and degradation and bearing performance. Shear wall with slits could significantly improve the energy dissipation capacity and improve the pinching phenomenon. However,its load carrying capacity is reduced drastically. The load carrying performance of stiffened steel plate shear wall is improved,while the distinct pinching phenomenon of curve still exists. Therefore,in actual projects,stiffeners need to be optimized so that they can provide sufficient constraint,and effectively improve the seismic performances.
引文
[1]徐建.非加劲薄钢板剪力墙性能试验与设计方法研究[D].重庆:重庆大学,2012:1-2.(XU Jian.Research on the behavior and design methods of unsiffened thin steel plate shear wall[D].Chongqing:Chongqing University,2012:1-2.(in Chinese))
    [2]郭彦林,周明.钢板剪力墙的分类及性能[J].建筑科学与工程学报,2009,26(3):1-13.(GUO Yanlin,ZHOU Ming.Categorization and performance of steel plate shear wall[J].Journal of Architecture and Civil Engineering,2009,26(3):1-13.(in Chinese))
    [3]王迎春,郝际平,李峰,孙彤.钢板剪力墙力学性能研究[J].西安建筑科技大学学报(自然科学版),2007,39(2):181-186.(WANG Yingchun,HAO Jiping,LI Feng,SUN Tong.Study on mechanical property of steel plate shear walls[J].Journal of Xi’an University of Architecture and Technology(Natural Science Edition),2007,39(2):181-186.(in Chinese))
    [4]Hitaka T,Matsui C.Experimental study on shear wall with slits[J].Journal of Structural Engineering,ASCE,2003,129(5):586-595.
    [5]Driver R G,Kulak G L,Kennedy D J L.Cyclic tests of four-story steel plate shear wall[J].Journal of Structural Engineering,ASCE,1998,124(2):112-120.
    [6]Vian D,Bruneau M,Tsai K C,Lin Y C.Special perforated steel plate shear walls with reduced beam section anchor beams:I:experimental investigation[J].Journal of Structural Engineering,ASCE,2009,135(3):211-220.
    [7]李峰.钢板剪力墙抗震性能的试验与理论研究[D].西安:西安建筑科技大学,2011:19-60.(LI Feng.Experimental and theoretical investigation to earthquake resistant behavior of steel plate shear wall[D].Xi’an:Xi’an University of Architecture and Technology,2011:19-60.(in Chinese))
    [8]李峰,李慧,李振敏,等.交叉加劲肋钢板剪力墙低周反复荷载试验研究[J].西安建筑科技大学学报(自然科学版),2009,41(1):57-62.(LI Feng,LI Hui,LI Zhenmin,et al.Cyclic test of diagonally stiffened steel plate shear wall[J].Journal of Xi’an University of Architecture and Technology(Natural Science Edition),2009,41(1):57-62.(in Chinese))
    [9]陈国栋.钢板剪力墙结构性能研究[D].北京:清华大学,2002:1-8.(CHEN Guodong.The investigation to structural behavior of steel plate shear walls[D].Beijing:Tsinghua University,2002:1-8.(in Chinese))
    [10]Chen S J,Jhang C.Experimental study of low-yieldpoint steel plate shear wall under in-plane load[J].Journal of Constructional Steel Research,2011,67(6):977-985.
    [11]Driver R G,Kulak G L,Kennedy D J L,Elwi A E.Seismic behavior of steel plate shear walls[R].Structural Engineering,Rep.No.215.Departmant.of Civil and Environmental Engineering,University of Alberta,1997.
    [12]石永久,王萌,王元清.循环荷载作用下结构钢材本构关系试验研究[J].建筑材料学报,2012,15(3):293-300.(SHI Yongjiu,WANG Meng,WANG Yuanqing.Experimental study of structural steel constitutive relationship under cyclic loading[J].Journal of Building Materials,2012,15(3):293-300.(in Chinese))
    [13]王萌.强烈地震作用下钢框架的损伤退化行为[D].北京:清华大学,2013:44-94.(WANG Meng.Damage and degradation behaviors of steel frames under severe earthquake[D].Beijing:Tsinghua University,2013:44-94.(in Chinese))
    [14]Chaboche J L.Time independent constitutive theories for cyclic plasticity[J].International Journal of Plasticity,1986,2(2):149-188.
    [15]Chaboche J L.Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J].International Journal of Plasticity,1989,5(3):247-302.
    [16]ABAQUS.Analysis user’s manual I_V.Version 6.10[M].Botha Rhode Island,USA:ABAQUS,Inc.,2010.
    [17]Shi G,Wang M,Bai Y,et al.Experimental and modeling study of high-strength structural steel under cyclic loading[J].Engineering Structures,2012,37:1-13.
    [18]JGJ 101—1996建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.(JGJ 101—1996Specification of testing methods for earthquake resistant building[S].Beijing:China Architecture&Building Press,1997.(in Chinese))
    [19]Ricles J M,Fisher J W,Lu L W,et al.Development of improved welded moment connections for earthquakeresistant design[J].Journal of Constructional Steel Research,2002,58(5/6/7/8):565-604.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心