随机共振结合RobustICA的两阶段结构损伤定位方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为实现强噪声背景低信噪比环境下的结构损伤识别,提出一种基于非线性随机共振降噪与鲁棒性独立分量分析(RobustICA)的两阶段损伤定位方法.第一阶段,运用非线性随机共振系统对强噪声低信噪比的测量响应进行预处理,以降低背景噪声的干扰并增强结构响应;第二阶段,结合RobustICA提取包含损伤信息的特征分量对结构响应异常进行识别,之后计算归一化的源分布向量(NSDV)的最大值对结构损伤异常进行定位.框架数值算例结果表明,所提出的算法能够较精确实现信噪比为5dB下的结构损伤异常识别与定位.
In order to realize the structural damage identification problem in the case of strong noise and low signal- to- noise ratio( SNR) environment,a two- stage damage location approach based on independent component analysis and nonlinear denoising derived from SR theory is proposed in this paper. In the first stage,structural dynamic responses and background noise are processed through the nonlinear SR system for enhancing the response signal. In the second stage,the feature components involving damage information are extracted via the robust independent component analysis( Robust ICA) algorithm and then are used to detect the structural response anomalies. Afterwards,the maximum of normalized source distribution vector( NSDV) is computed. On the basis of determined the damage index,the maximum of NSDV is employed to locate the structural damage. Numerical results of a frame show that the proposed algorithm can be successfully implemented the instant and location of damage in the case of low SNR with 5d B.
引文
[1]姜绍飞,董利强,许峰.基于振动时程响应的框架结构智能损伤检测[J].沈阳建筑大学学报:自然科学版,2012(4):1-6.
    [2]姜绍飞.结构健康监测-智能信息处理及应用[J].工程力学,2009,26(S2):184-212.
    [3]瞿伟廉,彭琦.桅杆结构竖向杆件损伤位置识别的时域方法[J].地震工程与工程振动,2007,27(5):110-116.
    [4]吴思瑶,姜绍飞.基于DWT-Fast ICA和IMPSCO的时变结构损伤识别研究[J].福州大学学报:自然科学版,2013,41(4):640-651.
    [5]Benzi R,Sutera A,Vulpiani A.The mechanism of stochastic resonance[J].Journal of Physics A:mathematical and general,1981,14(11):453-457.
    [6]冷永刚,王太勇.二次采样用于随机共振从强噪声中提取弱信号的数值研究[J].物理学报,2003,52(10):2 432-2 437.
    [7]冷永刚.大信号变尺度随机共振的机理分析及其工程应用研究[D].天津:天津大学,2004.
    [8]陈敏,胡茑庆,秦国军.外加信号增强随机共振在微弱信号检测中的应用[J].国防科技大学学报,2007,29(3):109-112.
    [9]Dylov D V,Fleischer J W.Nonlinear self-filtering of noisy images via dynamical stochastic resonance[J].Nature Photonics,2010,4(5):323-328.
    [10]胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107.
    [11]Zarzoso V.Comon P.Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size[J].IEEE Transactions on Neural Networks,2010,21(2):248-261.
    [12]刘鎏,闫云聚,常晓通,等.随机共振与响应灵敏度相结合的结构损伤检测方法[J].西南交通大学学报,2013,25(5):818-824.
    [13]李继猛,陈雪峰,何正嘉.采用粒子群算法的冲击信号自适应单稳态随机共振检测方法[J].机械工程学报,2011,47(21):58-63.
    [14]叶家宇,张顺健,黄剑.基于概率分布的异常数据发现与识别算法[J].计算机应用与软件,2012,29(11):139-140,164.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心