文章编号:1000~7393(2007)05~0079~03

烟道气驱提高采收率技术发展现状

马 涛 王海波 都红云2

(1. 中国地质大学能源学统、花家 100083.2 胜利油田公司采油工艺研究院、山东东营 257000)

摘要;在国际油价上涨、温室气体或排等因素影响下,使得烟道气服得到了发展。看缀了气体服替的发展历程及各种气体服替的优缺点,重点介绍了烟道气服的发展概况以及我国烟道气排故情况。 瓷速了烟道气服提高采收牵的粗理、烟道气处理技术以及在国沟油省的实践情况。国内油田的矿场实践表明;烟道气服可有效提高油藏的采取率,特别是对稠油油藏效果更好

关键词:烟道气;提离采收率;驱替;现状

中图分类号:TE357.45 文献标识码:A

油田在开发初期主要是依靠地层天然能量开采、随着油田开发的进行、油藏的能量逐渐衰竭。 于是科研人员开发了注水和注气技术。通过到油藏 注入水或气体使油藏能量得到恢复。 在量初油气藏 开发时,人们只关心油,采出的半生气要么在井口 烧掉,要么排放掉。后来发现将天然气注入地层可 以大幅度提高原油的采收率,于是注气技术得到了 发展。并逐渐发展了二氧化碳聚、氮气驱、烟道气 驱的气体驱替技术,由于翘通气驱的成本较氮气驱 高,因此发展缓慢。近年来随着人们对环境治理力 度的加大以及原油价格的上涨,超通气驱油技术又 有了发展的空间。因为如果考虑环境效益,烟道气 驱要比氮气驱经济划算。

1 气体驱替技术发展概况

20世纪初主要利用注天然气保持地层压力开采原油,因为当时天然气价格很低、特别是在一些水源不是很方便的地方,注天然气就变得事就经济实用。天然气的组分与原油很相似、特别是一些重组分含量较高的湿气、组成与轻质原油更接近、很容易与之发生混相,因此注天然气对于轻质原油提高采收率效果更好。20世纪60年代至70年代天然气价格上涨、研究重点转向二氧化碳驱、氮气聚和烟道气骤、处理后的惰性气体)。

从混粗角度来说,二氧化碳同氮气、增造气粗

比较更容易与原油发生混相,注二氧化碳涉及到气源、腐蚀、输送成本等问题,尤其是受到气源的限制。加拿大的二氧化碳气即很多,且离油田较近、因此二氧化碳取技术发展特别迅速、已大规模工业应用。中国缺少二氧化碳气源,具有证券等几个小油田进行了小规模的注二氧化碳先导试验。

在天然气驱、二氧化碳气驱逐渐不经济可行时,氮气驱开始受到关注。美国注氦气的成本是注 天然气的四分之一、是注二氧化碳的二分之一至三分之一,而且氦气源于空气、资源充足、安全可靠。但氦气很难与原油发生混相、尤其是重质原油、驱替效果不如天然气、二氧化碳和烟道气。

烟道气是天然气、原酒或煤炭等有机物在完全燃烧后生成的产物、主要成分为氮气和二氧化碳、烟道气驱的驱替效果介于。氧化碳驱和氮气驱之间。早期烟道气驱气源主要是产出天然气燃烧后的产物,在注入商必须经过一系列装置的处理才能达到注入要求。美国在上世纪60年代到89年代之间曾经在一些油田进行过烟道气驱矿场实践(麦1)。这一时期主要是通过燃烧律生天然气来产量超气,随后由于天然气价格上涨、烟道气驱琐量没有得到进一步的发展。随着人们对温室气体减量力得到进一步的发展。随着人们对温室气体减量力得到进一步的发展。随着人们对温室气体减量的有得到进一步的发展。随着人们对温室气体减量的表现。

时间	油田	公司	注入量 /10 ⁴ m ³ ·d ⁻¹	注入压力 /MPa	驱替方式
1966	31 块(Block 31)	阿科(Arco)	153	29.3	CO ₂ 段塞混相驱
1973	文图拉(Ventura)	莫比尔(Mobil)	48	38.0	非混相驱
1974	东哈克伯里(East Hackberry)	阿莫科(Amoco)	11(估计)	27.6(估计)	重力驱
1977	伊莱因(Elaine)	德士古(Texaco)	11(估计)	27.6(估计)	重力驱
1977	伊比利亚(Iberia)	德士古(Texaco)	5.7(估计)	27.6(估计)	重力驱
1977	豪金斯(Hankins)	埃克森(Exxon)	340	11.7	重力驱
1977	东宾格(East Binger)	菲利浦(Philips)	68	31	混相驱
1979	西哈克伯里(West Hackberry)	阿莫科(Amoco)	5.7(估计)	27.6(估计)	重力驱
1981	双弗里兹(Two Treds)	HNG	17	13.1	CO。段塞混相驱

温室气体减排为烟道气驱带来机遇

温室气体的过量排放使过去 140 年中全球平均 气温升高了0.4~0.8℃。如果不对温室气体的排 放采取严格的限制措施,继续增加温室气体排放,未 来的 100 年内全球平均气温可能上升 1.4~5.8 ℃, 全球海平面将比目前上升9~88 cm,给许多国家带 来灾难性后果。美国气候专家指出,温室气体中二 氧化碳的主要排放源来自火力发电厂,一座 1000 MW 的火力发电厂每年排放 560×10⁴ t 二氧化碳。

目前,随着《京都议定书》的生效,各国都在积 极发展温室气体减排技术,将富含二氧化碳的工业 废气注入油层以提高原油采收率是一项双赢的工 程,既可以减少大气中二氧化碳的浓度,又可以在一 定程度上提高原油采收率。

2.1 国内烟道气排放情况

世界自然基金会中国气候变化与能源项目的一 项最新研究报告显示,中国电力行业燃料几乎90% 来自煤炭。以2000年为例,当年中国年发电量为 13 684.82×108 kW·h,其中81.0%来自燃煤发电 厂,发电用煤 6.08×108 t,占煤炭总产量的 60.9%。 随着"十五"期间火力发电对煤炭需求的持续增加, 2002 年中国发电用煤达到 6.4×108 t,比 2000 年增 长5%。2003年新投产火电机组在1000×104kW· h 以上,增加电煤需求约 3000 × 10⁴ t。

如此大量地燃烧煤炭造成严重的大气污染。 2001年,燃煤发电二氧化碳排放约占中国因能源使 用而排放二氧化碳总量的25%。2001年,中国二氧 化硫排放总量为1948×10⁴t,其中火力发电排放的 二氧化硫为653.98×10⁴t。二是煤炭发电形成的大 气污染、水污染造成的经济损失以及由此引致的环 境污染治理成本高达 1606 亿元。

2.2 二氧化碳气体掩埋及提高采收率

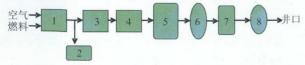
加拿大的一些研究人员发现:将二氧化碳注入 地层,不仅会大大减少向大气中排放的二氧化碳量, 还可以提高油田的石油产量,而且增产的石油所带 来的收益足以抵消向油井中注入二氧化碳的成本。 2000年在加拿大萨斯喀彻温省的维宾油田,耗资 2800 万美元开展了示范工程,用于检验在已投产44 年的维宾油田储存二氧化碳的可行性。在以后的 25 年中,加拿大将有 2100 × 10⁴ t 二氧化碳注入该油 田,据负责维宾项目的研究中心称,萨斯喀彻温省油 田的容纳能力足够大,可以储存未来25年加拿大所 有省份所排放的二氧化碳。从4年前向油田注入二 氧化碳到现在,油田产油量增加了50%,工程目标 是通过注入二氧化碳来获得 1800 × 104 t 总价值达 50 亿美元的石油增产量。

3 烟道气驱提高原油采收率技术

3.1 烟道气驱提高采收率机理

烟道气通常含有80%~85%的氮气和15%~ 20%的二氧化碳以及少量杂质,也称排出气体,处理 过的烟道气,可用作驱油剂。烟道气的化学成分不 固定,其性质主要取决于氮气和二氧化碳在烟道气 中所占的比例。烟道气具有可压缩性、溶解性、可混 相性及腐蚀性。根据烟道气中所含气体的组成,提 高采收率机理主要是二氧化碳驱和氮气驱机理。

3.1.1 二氧化碳驱机理 由于烟道气中二氧化碳 的浓度不高,所以不容易达到混相驱的要求,主要是 利用二氧化碳的非混相驱机理。即降低原油黏度、 使原油膨胀、降低界面张力、溶解气驱、乳化作用及 降压开采。由于二氧化碳在油中的溶解度大,在一 定的温度及压力下, 当原油与 CO₂ 接触时, 原油体 积增加,黏度降低。CO。在原油中的溶解还可以降 低界面张力及形成酸性乳化液。CO₂ 在油中的溶解度随压力的增加而增加,当压力降低时,饱和了CO₂ 的原油中的CO₂ 就会溢出,形成溶解气驱^[3]。与CO₂ 驱相关的另一个开采机理是由CO₂ 形成的自由气饱和度可以部分代替油藏中的残余油^[4]。


3.1.2 氮气驱机理 注氮气提高采收率机理主要有:(1)氮气具有比较好的膨胀性,使其具有良好的驱替、气举和助排等作用;可以保持油气藏流体的压力;(2)氮气可以进入水不能进入的低渗透层段,可降低渗透带处于束缚状态的原油驱替成为可流动的原油;(3)氮气被注入油层后,可在油层中形成束缚气饱和度,从而使含水饱和度及水相渗透率降低,在一定程度上提高后续水驱的波及体积;(4)氮气不溶于水,微溶于油,能够形成微气泡,与油水形成乳状液,降低原油黏度,提高采收率。

氮气与地层油接触产生的溶解及抽提效应,一方面溶解效应使原油黏度、密度下降,改善原油性质,使处于驱替前缘被富化的气体黏度、密度等性质接近于地层原油,气一油两相间的界面张力则不断降低,在合适的油层压力下甚至降到零而产生混相状态,在这种状态下,注氮气驱油效率将明显提高;另一方面,抽提效应使原油性质变差,这种抽提作用在油井近井地带表现更明显、更强烈。

烟道气驱更适用于稠油油藏、低深透油藏、凝析气藏和陡构造油藏。

3.2 烟道气注前处理

烟道气中能起溶剂作用而驱替原油的有效成分是 CO_2 和 N_2 ,处理目标是净化、富集。烟道气中的不利成分是水、灰尘,处理目标是脱水、除尘。注入烟道气的质量要求一般为: $m_{CO_2} > 12\%$; $m_{H_2O} < 0.1\%$; $m_{O_2} < 2\%$; $m_{N_2} \approx 88\%$; 无 SO_2 。烟道气处理过程:烟气采集、降温、除尘、脱水、压缩等(图 1)。

 $1-烟道气发生装置;2-带有自动断路的氧和易燃物分析记录仪;3-除尘装置;4-催化处理装置(降低<math>O_2$ 、CO含量至小于2mg/L);5-冷却塔;6-二级压缩机组;7-干燥装置;8-三级压缩装置。

图 1 烟道气处理流程

3.3 国内烟道气驱实践

近年来随着油价的持续攀升,使得烟道气驱技术在国内得到了迅速发展,特别是辽河油田,已经进

行了矿场试验。

辽河油田在 2001 年在锦州采油厂欢 17 块进行了烟道气驱开发试验^[5]。自 5 月份开始注烟道气,区块试验井组平均日产油从 20 t 增加到 30 t;区块的底层能量得到了补充,试验井的注入压力由 0.7 MPa 上升到 2.0 MPa;部分生产井已取得了动液面上升、产油上升的良好效果。锦 35 - 302 井从试验初期的日产油 5 t 上升到 8 t,最高达到 14 t,注烟气 3 个月后,该井累计增油 200 t。

烟道气双注采油技术目前有2种双注方式:一 种是烟道气和高压蒸汽同时注入,高压蒸汽从油管 注入井下,烟道气从油管和套管之间环形空间注入 井下,在油井底部混合进入油层,这适用于稠油井的 蒸汽吞吐调剖,注入的烟道气在高渗透油层能形成 一定封堵能力,使注入的蒸汽容易进入中低渗透油 层加热原油;另一种是烟道气和含油污水同时注入, 注烟气管线同油田注水管线相接,烟气与高压含油 污水混合后,同时从油管注入井下,用于烟道气非混 相驱[6]。自1998年12月以来,该技术先后在曙光 油田杜66块曙1-43-530(2轮次)、1-45-036、 杜 163、1-43-532 井组进行了现场工业性试验,截 至 2000 年 1 月 31 日, 累计增产原油 6038. 4 t。同 时,试验区块的自然递减下降为36.7%,综合递减 下降为5.22%,分别比上一年同期下降了7.8和 13.9 个百分点[7]。

辽河油田锦州采油厂在锦 45 断块、锦 7 断块进行 6 井次烟道气、蒸汽混注吞吐试验,累计注入烟道气 599 448 m³,注入起泡剂 30 t,节省蒸汽 4179 m³,增油 1200 t,取得显著经济效益^[8]。

4 结论及建议

开展烟道气驱既可以减少温室气体排放、降低 污染,又可以提高原油采收率,无论是从环境角度还 是从经济角度考虑均具有重要的现实意义。

尽管烟道气驱技术已经得到了一定的发展,但 是仍然存在一些制约其大规模应用的因素,还需在 多方面加强工作。

- (1)气源不足或气源与井场距离大,输送不便; 需要优化管网设计,就近气源开展应用。
- (2)气体如果处理不当,有水存在,会对管线、设备造成极大的防腐;需要提高气体处理技术和管材的抗腐蚀性能,应用新型材料管材如玻璃钢管等。

(下转第84页)

$$p_{\rm L} = p_{\rm Lc} + 3.639 Q^{0.45} \tag{5}$$

根据所建的漏失压力模型可以得到塔中 I 号奥陶系碳酸盐岩地层漏失压力的当量钻井液密度,即

$$\rho_{\rm m} = \frac{1000\rho_{\rm L}}{9.8H} \tag{6}$$

式中, ρ_m 为地层漏失压力当量密度, g/cm^3 ;H 为漏失井深,m。

2 实例验证

某井奧陶系含泥灰岩段地层 5123 m 处发生漏失,漏失发生工况为循环,泵压 10 MPa,排量 7.8 L/s,钻井液密度为 1.21 g/cm³,漏速为 0.87 m³/h。由漏失方程(2)得对应的压差为 3.42 MPa,该层段地层压力梯度为 1.18~1.23 MPa/100 m,根据建立的漏失压力模型(5),估计该层段的漏失压力为 63.87~66.43 MPa。根据井身结构,环空压耗为 4.29 MPa,则钻井液循环时井底的压力状态为 66.47 MPa。由于66.27>63.87~66.43 MPa,表明井底压力状态大于地层的漏失压力,因此发生循环漏失。

3 结论

- (1) 奥陶系漏失井深主要分布在 4500 ~ 5500 m 之间,漏失层位主要在颗粒灰岩段和含泥灰岩段,奥 陶系灰岩地层漏失通道主要为小一中裂缝、孔洞性漏 失为主。
- (2)根据塔中 I 号坡折带奥陶系颗粒灰岩段、含泥灰岩段漏失压差与漏失速度分布规律得到相应的漏失方程,建立了漏失压力模型,结果表明颗粒灰岩段漏失较含泥灰岩段严重。

(3)漏失压力模型计算结果与实际相符,为防漏 堵漏提供了依据。

参考文献:

- [1] 杜春常, 刘文忠. 裂缝地层漏失规律研究[J]. 西南石油学院学报, 1992, 14(8): 27-33.
- [2] 陈万安,张权. 非地层因素井下漏失原因分析及对策 [J]. 钻采工艺, 2001, 24(5):18-21.
- [3] 王广仁,魏彩婷. 漏失压力的计算方法研究[J]. 油气 田地面工程, 2003, 22(3): 11-12.
- [4] 王秋成,赵龙华. 井漏原因分析及地质应用探讨[J]. 录井技术通讯, 1996,7(3): 43-44.
- [5] 徐同台,刘玉杰. 钻井工程防漏堵漏技术[M]. 北京:石油工业出版社,1997.
- [6] 胥永杰. 高陡复杂构造地应力提取方法与井漏机理研究[D]. 四川成都: 西南石油学院,2005.
- [7] 徐华义,文传义. 确定地层漏失位置的新方法[J]. 石油钻采工艺, 1990,12(3):3-5.
- [8] DRUMMOND J M . An appraisal of fracture porosity [J]. Bulletin of Canadian Petroleum Geology, 1964 – 12:226 – 245.
- [9] POUISEN D K. A comprehensive theoretical treatment of fracturing fluid loss [R]. SPE 18 262,1988.
- [10] MORITA N. Theory of lost circulation pressure [R]. SPE 20 409,1990.
- [11] DYKE C G, BAITIN WU, DAVID MILTON, TAYLER. Advances in characterising natural fracture permeability from mud log data[R]. SPE 25 022,1992.
- [12] ALEXANDRE LAVROV. Modeling mud loss in fractured formation[R]. SPE 88 700, 2004.

(收稿日期 2007-06-20) [编辑 付丽霞]

(上接第81页)

- (3)因需要对气体进行处理、修建输送管线等, 前期投资大、收益慢、风险高;应综合考虑经济效益, 将环境效益计算在内,争取取得国家政策的支持。
- (4)对于渗透率较高的油藏,容易产生气窜,不易见效;在应用前,应对油藏进行详细描述,充分了解油藏状况,选择合适油藏开展工作。 参考文献:
- [1] 莫增敏.用 CO₂产出气及烟道气提高重油采收率的效果对比[J]. 国外油田工程,2000,16(2):1-6.
- [2] 王大钧. 氮气和烟道气在油气田开发中的应用[M]. 北京:石油工业出版社,1991.
- [3] Chung F T H, et al. Research aimed at immiscible CO₂ flooding[J]. Oil & Gas Journal, 1987 – 04 76 – 82.

- [4] HOLM L W. CO₂ flooding: its time has come[J]. JPT, 1982 - 12:2739 - 2745.
- [5] 辽河油田烟道气驱油试验初见成效[J]. 石油规划设计,2002,13(2):10.
- [6] 行登恺,张丽梅,罗明英,等. 烟道气双注采油工艺研究[J]. 西安石油学院学报:自然科学版,2003,18(2): 28-31,35.
- [7] 陈德民. 气—汽段塞驱改善油藏开采效果[J]. 特种油气藏,2003,10(2):72-76.
- [8] 李峰,张凤山,丁建民,等. 稠油吞吐井注烟道气提高采收率技术试验[J]. 石油钻采工艺,2001,23(1):67-68.

(收稿日期 2007-03-20) [编辑 付丽霞]