喀拉通克I号硫化铜镍矿床地球化学特征及 矿化富集规律探讨

帕拉提•阿布都卡德尔-

(新疆工学院地质系)

提 要:喀拉通克 I 号铜镍矿床是与基性杂岩体有关的岩浆硫化物矿床.矿床ΣREE和稀土 配分模式与国内同类矿床相似。铜、镍、钴等主要元素和金、银、铂等贵重金属元素赋存规律明 、显,与矿化富集规律计算机模拟结果吻合。岩石模式年龄等数项测试分析,为矿床的形成(物理 化学条件分析)提供了较合理的依据。

关键词: 新疆 喀拉通克 硫化铜镍矿床 地化特征 矿化富集规律

喀拉通克 I 号硫化铜镍矿床的构造位置处于准噶尔地台边缘额尔齐斯深大断裂西南阿尔 曼太复背斜中。新疆地矿局实验室、地质四大队对其岩体、矿床地质特征及矿石金属矿物特征 作了较详细的研究。本文是在前人研究基础上着重对该矿床的地球地学特征、矿化富集规律 和成矿物理化学条件进行探讨。

一、稀土元素特征

选择矿床 6 个样品作稀土元素分析,其∑REE如表 1,配分模式如图 1。稀 土元素配 分模式均为右倾的亏HREE模式,LREE相对富集,亏铈、铕呈正异常●。矿床∑REE和配 分型式与国内赤柏松、金川较相似,但稀土元素分异较后二者强。产于不同相的样品REE 模式相同,说明均属同一岩浆分异结晶作用的产物。(La/Sm-La 变异图(略)显示岩 浆为一 次分熔。La/Yb比值为6.84—10.91,可与金川等对比,成岩成矿物质来源于上地幔⁽¹⁾。

二、有用元素赋存规律

矿石中主要成矿元素为铜、镍、钴,件生有用元素银、金、铂、钯、硒、锑、硫等。从 笔者选送的电子探针分析(表2)及前人电子探针、显微激光分析、单矿物化学分析等成果 表明:镍在镍黄铁矿、紫硫镍矿、针镍矿、马基诺矿、辉砷镍矿和磁黄铁矿中赋存,但镍的主 要赋存矿物是镍黄铁矿、紫硫镍矿和磁黄铁矿。铜以独立矿物为主,主要为黄铜矿和少量的 方黄铜矿。钴以类质同象赋存于镍黄铁矿、辉铁镍矿、磁黄铁矿中,其独立矿物有微量辉钴。 矿和辉砷铅矿,其含量在致密块状矿石中 为最高(0.082%)。金、银主要赋存于 致密块状矿石中,其次分布于细脉浸染状 矿石,呈含银自然金、银金矿、碲银矿等 微小包体赋存在磁黄铜矿中(主要在较晚 期磁黄铁矿中)。钯、铂以碲镍铂钯矿、 等轴碲铋钯矿等的显微包体赋存于高铜致 密块状矿石及细脉浸染状矿石中。

三、矿化富集规律的模拟研究

用矿床600,700,800,900m四个水 平,按1984年以前钻孔资料,取铜、镍、 铂+钯的座标(含量在2轴取值,样点X -Y座标上取值,采用《APPLE-I微 机数据处理等值线及三维图型编绘程序》 (冯英进,1987),分别绘制出矿床铜、 镍、铂+钯元素含量拟合曲面的立体图 (略),同时绘制元素含量等值线图 (略),同时绘制元素含量等值线图 (略)。上述图件与实际钻孔资料作出的 勘探线铜、镍、钴品位实际变化图对照, 拟合良好。矿床具有如下矿化富集规律:

1. 自地表至深处,铜、镍、铂+钯、
 钴含量呈有规律递增,与矿石中硫化物含量,矿石类型变化规律相一致。

 2.铜、镍、铂+钯品位高的矿石.
 主要分布在岩体东南偏北侧, 向SW向 NWE,品位不断增加,延伸方向与岩体一 致,但长宽规模小且偏北侧。延伸方向与 28勘探线交点附近为最富矿段。

3. 铜、镍、铂+钯具有正相关性 (三个元素组的相关系数大于0.78,一般

图1 国内典型矿床浸染状矿石REE配分型式

Fig.1 REE partition pattern of disseminated ores of typical deposits in China

1--ZK13-250m; 2--ZK152-308m; 3--ZK157-300m;
 4--ZK162-320m; 5--ZK152-328m; 6--ZK162-297m;
 7--玄武岩(国际标准岩样,中子语化法),M-6,M-R-1---黄山东辉长苏长岩浸染状矿石; ANi-4--力马河辉石 岩 浸染状矿石; 红 7-04--红旗岭7号岩体橄辉岩浸染 状 矿石;
 红1-06--红旗岭1号岩体辉橄岩浸染 状 矿石; ANi-15---金川二辉橄榄岩浸染状矿石; 赤-14--赤柏 松 辉 长 玢 岩 浸染状矿石

为0.95); 在逐步聚类谱系图中聚为同一共生组; 回归方程拟合优度较高(76%,70%)₍₂₎; 上述数理统计特征与立体图吻合, 且三个图很接近, 仅细微形态有差异。三组元素的分布, 一般严格受岩体侵入界面控制。

四、成岩成矿时代及成矿物理化学条件的探讨

1. 三个硫化物样和一个全岩样的铅同位素测定结果(表3)

采用霍尔莫斯—赫特曼斯(1946)模式 ⁽³⁾计算得模式年龄: I₁₅₁₋₄₀为200 Ma年; I₁₅₇₋₅₀为200Ma年; I₁₃₋₁₂为280Ma年; P₄₁为300Ma年。另据新疆地矿局科研所对矿床 中部黑云橄榄苏长岩用全岩K-Ar法测得年龄值分别为250Ma; 295Ma。可见两组测试结果 表1 稀土元素丰度值(ICP-AES法)

单位:×10-6

Table	1	Abundance	of	rare	earch	elements	(ICP	-AES	method)	
-------	---	-----------	----	------	-------	----------	------	------	---------	--

-										
编号	样品号、位置	岩矿石类型	La	Ce	Pr	Nd ·	Sm	Eu	Gd	Tb
1	P1.ZK13-250m	橄榄苏长岩浸染状矿石	13.73	28.79	3.66	15.54	3.03	1.171	2.569	0.371
2	P2.ZK152-308m	橄榄苏长岩浸染状矿石	4.14	8.79	1.12	5.13	1.03	0.403	0.888	0.170
3	P3.ZK157-300m	- 块状矿石	0.33	0.89	0.14	0.39	0.08	0.029	0.052	0.007
4	P4.ZK162-320m	辉长苏长岩浸染状矿石	6.31	14.59	2.13	8.18	2.01	0.689	1.830	0.276
5	P5.ZK152-328m	橄榄苏长岩浸染状矿石	ī 1.56	3.53	0.55	1.93	0.45	0.176	0.414	0.076
6	P6.ZK162-297m	辉长苏长岩浸染状矿石	9.72	21.20	3.06	11.54	2.70	0.887	2.410	0.331
7	玄武岩(国际标)	崔岩样、中子活化法)	15.50	38.90		·25.10	6.11	2.11	-	0.97
编号	样品号、位置	岩矿石类型	Dy	Но		Er	Ţm	УЬ	Lu	Y
1	P1.ZK13-250m	橄榄苏长岩浸染状矿石	2.400	0.4	48 1	.300	0.184	1.259	0.176	13.32
2	P2.ZK152-308m	橄榄苏长岩浸染状矿石	0.872	Ò.1	62 0	.451,	0.065	0.446	0.064	4.47
3	P3.ZK157-300m	块状矿石	0.038	0.0	08 0	.022	0.003	0.017	0.003	0.15
4	P4.ZK162-320m	辉长苏长岩浸染状矿石	1.770	0.3	26 0	1978	0.145	0.922	0.131	8.52
5	P5.ZK152-328m	橄榄苏长岩浸染状矿石	0.396	0.0	75 0	.210	0.032	0.175	0.027	1.79
6	P6.ZK162-297m	辉长苏长岩浸染状矿石	2.270	0.4	35 1	.247	0.175	1.165	0.168	10.83
7	玄武岩(国际标)	建岩样、中子活化法)	_	1.11		-		2.09	0.30	
 产1	电 黄山东	红旗岭 赤柏松	金川	力马河		喀拉	Z通克Yı	岩体		国际标 准样
矿石 岩石	类型 浸染状 (辉长苏长岩)	浸染状 浸 染状 橄榄岩)(料长玢岩)(二	浸 染状 辉橄榄岩	浸染状 (辉石岩)		2	3	4 ' 5	6	玄武岩
∑RI	EE 16.80	16.56 43.76	25.53	40.20	74.62	2 22.73	2.01	40.299.6	0 57.31	<u> </u>
La/	Yb 3.13	4.82 4.79	5.30	11.00	10.91	9.28	19.41	6.84 8.9	1 8.34	7.42

注: 编号1-6为湖北地矿局实验室分析.

吻合。

不同类型矿石铅同位素的一致性表明其物质来源具同源性。贯入型块状矿石模式年龄较小,证明其成矿阶段在岩浆上侵固结——浸染状矿石形成之后。浸染状矿石与全岩 年龄 接近,表明其成岩成矿具同时性。由此确定Y₁岩体侵入地质时代相当于石炭纪末至 二叠 纪早期,即华力西中晚期的产物。贯入矿体的形成大致在三叠纪中期。

用含矿岩体各岩相化学成分(46个样)计算后投入French图解(1981), 获 各相岩石 形成的平均温度分别为闪长岩:1090℃; 辉长苏长岩:1160℃; 辉绿辉长岩:1130℃; 橄榄 苏长岩:1210℃。据氧化物重量百分数Кутолин法(1966)计算橄榄石、斜长石结晶温度分 别是:Tol1425—1122℃,Tpl1200—1145℃(两种结果误差都为±25℃)。镜下研究表明岩 体内橄榄石结晶最早,故可认为Y1岩体约在1400℃时开始晶出、约于1000℃时基本固结。

据四个岩相的 French MgO/Al₂O₃-P 图解(1981),求得 Y₁岩体的岩浆形成时的压力 为(21-37)×10⁸ Pa。据CIPW标准矿物分子的Ol'-Ne'-Q' 图解,获岩体的岩 浆 形成时

表2 主要矿石矿物成分电子探针分析结果

Table 2 Results from electron-microprobe analysis of the mineral compositions of main ores

	1					元 素	合	₽ (9	6)			
矿石类型	地点	样号	矿物名称	S	Co	Cu	Ni	Fe	Cr	Au	Pt	Σ
	ZK13(265m)	I13-23-3	磁黄铁矿	40.23	0.03	0.03	0.17	59.79		0.07		100.32
	ZK137 (283m)	I157-27-2	磁黄铁矿	42.07	0.04	0.01	0.22	59.96			0.11	102.41
块	ZK137 (283m)	I157-27-3	磁黄铁矿	41.77	0.08		0.22	59.68				101.75
15	ZK137 (283m)	I157-27-4	磁黄铁矿	41.55	0.04	-	0.38	59.52	0.01		0.08	101.58
1	ZK1,, (283m)	I 157-27-5	磁黄铁矿	41.60	0.07	0.01	0.32	59.41		0.06	0.09	101.66
a -	ZK13(265m)	113- 23-2	黄铜矿	33.71	0.01	34.62		30.31		0.06		98.71
	ZK 1 57 (270m)	I 157-25-1	黄铜矿	35.21	0.03	23.46		41.53		0.03		100.26
石	ZK157 (270m)	I157-25-2	镍黄铁矿	33.61	1.17	0.01	34.74	30.60	0.02	0.03	0.09	100.26
	ZK1, (265m)	13-23-1	磁铁矿		0.05		0.03	65.54	0.01	0.06		65.69
	ZK157 (283m)	I157-27-1	紫硫镍矿	35.00	0.03	35.74	31.07				0.27	102.11
	ZK151 (331m)	I151-38-3	磁黄铁矿	40.51	0.05	0.02	0.82	56.14		0.03		97.57
浸	ZK131 (224m)	I151-24-2	磁黄铁矿	40.77	0.10	0.03	1.23	58.41		1	0.18	100.72
梁	ZK151 (331m)	I151-38-1	黄铜矿	34.40		30.77	1	27.68	0.03	0.07	0.52	93.47
次	ZK131 (331m)	I151-38-2	磁铁矿	-	0.04	0.05	0.06	64.21	0.22		0.25	65.28
۳ Æ	ZK131 (224m)	I151-24-1	黄铁矿	55.24	1.90	0.01	0.02	45.72			0.09	102.98
-14	ZK131 (224m)	I151-24-3	紫硫镍矿(?) 43.73	0.19)	30.12	26.72		0.07	0.21	101.02
网	ZK13 (254m)	I13-22-1	黄铜矿	36.30	0.02	34.86		30.35				101.43
脉" 状 ^石	ZK13(156m)	[13-14-1	黄铁矿	53.65	0.04		0.02	46.74				100.45

冶金部天津地研院九室测定。

表3 铅同位素测定结果

Table 3 Results from Pb isotopic dating

	WT 116 m. 1991)	께수가슈	同	位素比	值
怀本亏	米存位重	\ 矿石类型	测定对家	Pb ²⁰⁶ /Pb ²⁰⁴	Pb 207/Pb 204	Pb 20 8/Pb 204
I151-40	ZK151 345m	块状矿石	磁黄铁矿	17.691	15.232	37.232
I157-30	ZK157 303m	坎状黄铜矿矿石	黄铜矿	17.911	15.323	37.872
I13-12	ZK13 142m	稀疏浸染状矿石	黄铁矿	17.858	15.363	37.522
P41	ZK162 297m	稠密浸染状矿石	橄榄苏长岩	17.979	15.490	37.881

冶金部栏补矿产研究院同位素加定。

压力为(21—35)×10⁸Pa,相相于深65—110km,从而也佐证了岩浆来自上地幔。当岩浆 由上地幔上侵到岩浆房并开始结晶,其内压力应达到平衡,据镜下橄榄石具斜方 辉 石 反 应 边,考虑平衡:

$$2MgSiO_{3} = Mg_{2}SiO_{4} + SiO_{2}(熔_{4})$$
(1)
$$H(\frac{\partial \Delta G^{0}}{\partial P})_{T} = \Delta V, \quad H算下式 \quad (4)$$

$$\Delta G_{r.t}^{0} - \Delta G_{r.298}^{0} = \int_{1}^{P} \Delta V dP = \Delta V(P-1) \quad (2)$$

求高 温下反应(T用橄榄石结晶温度1 425—1 122℃,并换算为K)平 衡 $\Delta G_{r,t}^{0}$ 及标 准 反应自由能 ΔG_{r+208}^{0} ,获得岩浆成岩时总压力为 (3.27—4.07)×10⁸Pa, 固结温度不低 1 000℃,岩浆固结处深度在5—10km。

2。选择四个样品测试穆斯堡尔参数(表4)

表4 块状矿石部分矿物的穆斯墨尔参数

样品号	,矿物名称	中心位移 (mm/sec)	四极分裂 (mm/sec)	内磁场 ×(1000/4π) A/m	所占比例 (%)	铁离子价态
	磁黄铁矿	<u> </u>]	1		
3 151-40	A位	1.49	0.71	119280	40.74	Fe'2+
, , , , , , , , , , , , , , , , , , ,	B位,	1.90	0.84	112560	29.29	Fe ²⁺
	C位	2.26	0.87	109200	29.97	Fe ²⁺
I 157-30	黄铜矿	0.25	0	345058.56	100	Fe3+
	磁铁矿					
•	A位	0.25	0	480990.72	42.Q2	Fe ³⁴
I 157-24	B位 .	0.65	0.04	449621.76	57.98	(Fe ²⁺ +Fe ³⁺
ſ	铬尖晶石	1.18	0.33	480990.72	. 100	Fe ²⁺
I 157-40	镍黄铁矿	0.36	-0.04	345058.56	100	Fe ³⁺

Table 4 Mossbauer parameter of some minerals of massive ores

注: 相对于 a-Fe.

磁黄铁矿中均为Fe²⁺,分别A(配位数6,八面体);B(配位数8,立方体);C (畸变配位多面体)三种构型(C是由于Ni²⁺、Co²⁺类质同象混入所致)。黄铜矿中铁6次 八面体配位,其化学式是Cu⁺Fe³⁺S₂²⁻。磁铁矿有Fe²⁺,Fe³⁺二种离子,Fe³⁺占八面体A 位、Fe³⁺的1/2占八面体和1/2占四面体位置(合为B位),B/A=1.38,Fe³⁺在全部Fe离 子中所占比例为[42.02+ $\frac{1}{2}$ (57.98)]%=70.98%。镜下统计块状矿石中Mt(磁铁矿)平 均含量4%-5%,表明成矿时具一定氧化电势。矿石中虽硫化物约占95%,但通过铁的价态 分析,笔者认为,在保持较高fs₂前提下,又有适当的fo₂值,有利于镍黄铁矿、黄铜矿等含 三价铁的铜镍硫化矿物形成,有利铜、镍在块状矿石(贯入矿体)中大量富集,而较少形成 磁黄铁矿等二价铁矿物。

块状和浸染状矿石单矿物X射线粉晶衍射分析测得浸染状矿石中,斜长石 有 序 度 较 高 (0.87,0.86),为低温型斜长石,表明通过较慢结晶而形成,同时有利于硫化物熔离。磁 黄铁矿为高温六方磁黄铁矿,据其(102)反射面网间距d102,推算形成温度: 浸染状矿石 中为500℃,块状矿石中为475℃。黄铜矿属四方α相低温型,其形成温度在557℃以下,此矿物形成期次多,结晶时间长,从557—350℃为大致形成温度(表 5 为 部 分 矿物 包体爆裂温度),说明黄铜矿成矿温度低于磁黄铁矿。块状矿石中的磁黄铁矿形成温度低于浸染状矿石中的磁黄铁矿。

样	号	釆样位置	矿物名称	矿物类型	岩石类型	爆裂温度
I 13—2	6	ZK13 287m	磁黄铁矿	块状矿石	-	280°C
I 13-2	6	ZK1, 287m	黄铜矿	块状矿石		350°C
P65		ZK192 334m	磁黄铁矿	块状矿石		350°C
P 65		ZK132 334m	黄铜矿。	块状矿石		340° C
P 57		ZK192 149m	磁黄铁矿	浸染状矿石	角闪橄榄苏长岩	400°C
J 157—	-24	ZK157 269m	黄铜矿	块状矿石		380°C

表5 部分矿石矿物包体爆裂温度

Table 5 Decrepitation temperatures of the mineral inclusions of some ores

早期熔离阶段,当温度在600℃以上,岩浆挥发份少且硫离子浓度低,先形成钛磁铁矿, 可由镜下见钛铁矿与磁铁矿固熔体分离格状结构,少量硫化物呈乳滴状、珠球状结构作为佐 证。随着温度的下降.大量硫化物与残余熔浆分离,从而进入主要成矿阶段^[5]。成矿早期 主要熔离磁黄铁矿+镍黄铁矿+黄铜矿,构成组合A,其固熔体分离结构十分普遍,无黄铁 矿生成。此时成矿温度为600-425℃,硫为气体状态,fs₂高,估计 logfs₂ = -2--6。

成矿晚期,矿浆贯入阶段,又可分出B,C,D三组矿物组合:组合B,主要矿物为磁黄 铁矿+镍黄铁矿+黄铜矿(伴有铂、金、银等形成块状、胶结状,贯入型矿体);组合C, 黄铁矿(或磁黄铁矿)+紫硫镍矿(针镍矿)+第二世代黄铜矿,成矿温度400-300℃, fs2比较低,logfs2=-6.5---10.5。在此范围内有利于另一个主要含镍矿物——紫硫镍矿形成。组合D,黄铁矿+辉铁镍矿+黄铜矿呈晚期细脉状硫化物叠加和高—中温热液交代阶段 的毒砂+黄铜矿+砷黝铜矿+方铅矿等组合,形成细脉、网脉、斑杂状矿石,成矿温度 约300℃。这两种组合的fs2更低,logfs2≤-10.5。后一组合以镍消失,铅锌矿物出现为特 点。

矿物共生组合也与氧逸度(fo2)有关。各成矿阶段都有磁铁矿存在, 在数 量上以组合 A为最高,组合B下降,但有4%—5%。组合C、D为1%—2%,显出逐渐减少。说明 fo2也 随之逐渐降低,但应保持一个限度,以使Fe³⁺的硫化物形成,有利于镍、钴等有用元**素不** 以类质同象进入硅酸盐矿物,而富集在硫化物矿浆内。成矿溶液中S²⁻与S¹⁻离子活度可根 据各成矿阶段都是磁黄铁矿,黄铜矿含量远大于黄铁矿来推测αs²⁻»αs¹。

结论

喀拉克通Ⅰ号铜镍硫化矿床的稀土总量∑REE和配分模式,与金川、赤柏松等国内同类 矿床较为相似,物质成分为来自上地幔部分熔融产物。根据测试数据和研究表明铜、镍、钴 在硫化物中富集,金、银、铂则形成独立矿物。矿化富集规律的计算机模拟研究为首次尝 试,曲面立体图与实际吻合较好,该法对矿层、矿床的延深有一定的实用意义。

参考文献

- (1) 王润民等,1987,新疆哈密土墩一黄山一带铜镍硫化物矿床成矿控制条件及找矿方向的研究。矿物岩石, 7卷 1期,41--66页。
- (2) 王学仁, 1982, 地质数据的多变量统计分析, 75-101页, 科学出版社。
- (3) G·福尔著,潘曙兰等译, 1977, 同位素地质学原理, 181-209页, 科学出版社.
- (4) 涂光炽等, 1984, 地球化学。下海科技出版社, 401-404页。
- (5) Naldrett, A. J., 1981, Nickel sulphide deposits: Classification, Composition, and Genesist Econ. Geol., Vol 75, PP. 628-685.

STUDY ON GEOCHEMICAL CHARACTERISTICS AND MINERALIZATION ENRICHMENT REGULARITY OF KARATUNGKE NO. I CU, NI-SULPHIDE DEPOSIT. XINJIANG

Parat. Abdukader

(Department of Geology, College of Industry and Engineering, Xinjiang)

Abstract

The karatungke No.I Cu, Ni-sulphide deposit is a magmatic sulphide deposit related to basic complex rocks. Its REE and partition pattern are similar to those of deposits of same type in other regions of china. Main elements such as copper, nickel and cobalt and precious metal elements such as gold, silver and platinum have an obvious enrichment regularity, which coincides with the Computer modelling results. Analysis of modelling ages of rocks as well as analysis of geochronology, thermodynamics and lithogeochemistry provide the basis for the formation of the deposit.

Key words

Xinjiang, Karatungke, Cu, Ni-sulphide deposit, geochemical characteristic, mineralization enrichment regularity