二溴羟基苯基荧光酮和溴化十六烷基吡啶 分光光度法测定镓

夏道沛① 黄忠平 黄慧萍(中国地质大学应化系 武汉 430074)

摘 要 研究了 Ga 与二溴羟基苯基荧光酮、CPB 的显色反应。在 pH 6. $1\sim6$. 6 间,配合物的最大吸收波长在 578 nm,摩尔吸光系数为 1. 87×10^5 , $0\sim6~\mu g~Ga_2O_3/25~ml$ 范围内符合比尔定律,应用于矿石中微量 Ga 的测定,结果满意。

关键词 分光光度法 二溴羟基苯基荧光酮 镓

二溴羟基苯基荧光酮(DBHPF)自合成以来已用于 $Ti^{(1)}$ 、 $Mo^{(2)}$ 、 $W^{(3)}$ 、 $Zr^{(4.5)}$ 等元素的光度分析。本文研究了在溴化十六烷基吡啶(CPB)存在下,试剂与 Ga 的显色反应。结果表明,在 $pH6.1\sim6.6$ 的六次甲基四胺—HCl 缓冲溶液中,该体系能形成紫红色的三元配合物,不但灵敏度高($\epsilon_{578}=1.87\times10^5$ L·mol $^{-1}$ ·cm $^{-1}$),而且稳定性好,应用于矿石中微量 Ga 的测定,结果令人满意。

1 实验部分

1.1 主要试剂和仪器。

Ga 标准溶液 用 Ga_2O_3 配制成 ρ (Ga_2O_3)=100 μ g/ml 的 Ga 标准贮备液,再稀释成 ρ (Ga_2O_3)=5 μ g/ml 的 Ga 标准工作液。

DBHPF 乙醇溶液 0.4 g/L。

CPB 溶液 16 g/L(每 100 ml 溶液中含 40 ml Z.醇)。

六次甲基四胺—HCl 缓冲溶液 称取 20 g 六次甲基四胺溶于 100 ml 水中,在 pH 计上,用 HCl(2+1)调节至 pH 6.3。

721 型分光光度计。

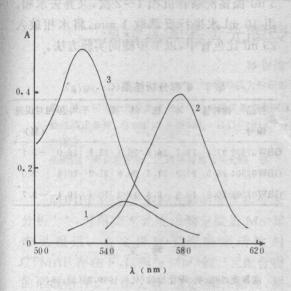
1.2 实验方法

吸取适量的 Ga 标准工作液置于 25 ml

比色管中,加 1 滴对硝基酚,用稀 NaOH 中和至呈黄色,再用稀 HCl 中和至溶液无色,加 pH 6.3 的六次甲基四胺—HCl 缓冲溶液 5 ml、CPB 溶液 0.5 ml 及 DBHPF 溶液 0.5 ml,摇匀,置于 50~55 C水浴中加热 10 min。取出冷却后,用水稀至刻度,摇匀;在分光光度计上 578 nm 波长处,用 1 cm 比色皿,以试剂空白作参比测量吸光度。

2 结果与讨论

2.1 吸收曲线


由图 1 可知, Ga^{3+} —DBHPF 二元配合物的 λ_{max} 在 550nm, $\epsilon=5.6\times10^4$ 。而 Ga^{3+} —DBHPF—CPB 三元配合物的 λ_{max} 则在 578 nm, $\epsilon=1.87\times10^5$,其灵敏度比二元配合物提高 3 倍多,最大吸收波长红移 28 nm。可见CPB 已参与了配合物的组成。

2.2 酸度的影响

分别在弱酸性(HAc—NaAc, 六次甲基四胺—HCl)、弱碱性(硼砂—HCl)的溶液中进行了试验。结果表明:在六次甲基四胺—HCl 缓冲溶液中灵敏度较高,在 pH 6.1~6.6 范围内,吸光度最大且恒定,故选用 pH 6.3。

2.3 显色剂的用量

① 夏道沛 男,教授,从事分析化学的教学和科研工作。

图 1 吸收曲线*

- 1. Ga³⁺—DBHPF(对试剂空白)
- 2. Ga3+-DBHPF-CPB(对试剂空白)
- 3. DBHPF—CPB(对水)
- *1、2体系中含 5 µg Ga₂O₃

实验表明: DBHPF 的用量在 $0.4\sim0.6$ ml 时,吸光度最大且稳定,故选用 0.5 ml。

2.4 表面活性剂的选择及用量

分别试验了 CPB、CTMAB、乳化剂 OP、曲拉通 X-100 等对反应灵敏度的影响。结果表明:加入 CPB 时增敏效果较好,灵敏度较高。CPB 的用量在 0.3~1.0 ml 时,吸光度最大且恒定,故选用 0.5 ml。

关于 CPB 在显色体系中的增敏作用:把 -log (CPB) 控制在 4.5~2.5 之间,用滴体 积法测得本体系中 CPB 的表面张力曲线。另 测得其相应的配合物吸光度曲线(图 2)。结果表明:在表面张力曲线折点(两条切线交点)处浓度,即为 CPB 的 CMC 值(4×10⁻⁴ mol/L),在其附近稍大于 CMC 值时,配合物 吸光度可达最大值。可见 CPB 胶束对配合物 的形成和增敏有重要影响。

2.5 显色温度及时间

室温时,配合物的形成速度较慢,但在 50~55℃的水浴中加热 10 min 即可显色完 全,冷却后吸光度达到最大值,并可保持稳定 12 h。

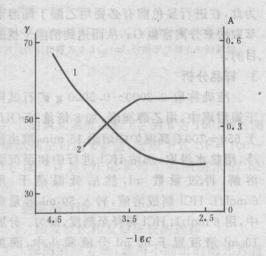


图 2 表面张力曲线

- 1. CPF
- 2. 对应的吸光度曲线

2.6 工作曲线

实验结果表明:Ga 量在 $0\sim6$ μg $Ga_2O_3/25$ ml 范围内符合比尔定律。吸取 $\rho(Ga_2O_3)=5$ $\mu g/ml$ 的标准工作溶液 1.0 ml 共 10 份,按实验方法进行平行测定,测得吸光度为0.398(3 次),0.400(4 次),0.401(2 次),0.402(1 次)。求得平均值为<math>0.400,S为1.3× 10^{-3} ,RSD 为 $2.5\times10^{-3}(\%)$ 。

2.7 配合物的组成

用摩尔比法、连续浓度变化法和平衡移动法测定配合物的组成比,结果一致,Ga: DBHPF=1:3。另用平衡移动法图中的横轴截距法,计算得配合物的表观稳定常数 $K'_{**}=7\cdot2\times10^{10}$ 。

2.8 共存离子的影响

实验了常见共存离子的干扰情况,对 5 $\mu_{\rm g}$ Ga_2O_3 的测定,误差 $\leq \pm 5\%$ 时,共存离子的允许量($\mu_{\rm g}$)为: CaO、MgO(500), Cr^{6+} 、

 $Ag^+(100)$, $Fe^{3+}(50)$, Cd^{2+} 、 $Sb^{3+}(20)$, Ge^{4+} 、 Sn^{4+} 、 Ni^{2+} 、 Cu^{2+} 、 $Zn^{2+}(5)$ 及 Cl^- 、 NO_3^- 、 SO_4^{2-} 、等不干扰测定;而 Al^{3+} 、 Ti^{4+} 、 W^{6+} 、 Mo^{6+} 、 Mn^{2+} 、 In^{3+} 、 Tl^{3+} 、 V^{5+} 对测定有干扰。为此,在进行显色前有必要用乙酸丁酯溶剂萃取法来分离富集 Ga,从而达到消除干扰的目的。

3 样品分析

准确称取 0.2000~0.5000 g 矿石试样于镍坩埚中,用乙醇润湿,加 8 倍量 NaOH,于 650~700℃高温炉中熔融 15 min,取出稍冷,用热水浸取,加浓 HCl 进行中和至沉淀溶解,再,过量数 ml,然后低温蒸干,用6 mol/L HCl 制成溶液,转入 50 ml 容量瓶中,用6 mol/L HCl 稀释至刻度,摇匀。分取10 ml 清液置于 60 ml 分液漏斗中,滴加15% TiCl。至溶液呈紫色,再过量数滴,放置0.5 h后,加入乙酸丁酯 10 ml,振荡萃取 1 min,待分层后弃去水相,再用 6 mol/L HCl

5 ml 振荡洗涤有机相 1~2 次,又弃去水相。 用 10 ml 水进行反萃取 1 min,将水相放入 25 ml 比色管中,以下步骤同实验方法。

表1 矿样分析结果(Ga, µg/g)

样品	推荐值	本	法	结身	上 I	平均值 相对误差	
编号							(%)
GBW07302	2 27. 4	25. 7	26.5	26.1	25.8	26.0	-5.1
GBW07304	1 20. 5	20. 2	21.5	20.8	21.2	20.9	2.0
GBW07308	3 10. 8	10.2	9.6	11.3	10.4	10.4	-3.7

参考文献

- 1 潘教麦,徐汝明. 理化检验(化),1989,25(4):194.
- 2 潘教麦,田 文等. 理化检验(化),1991,27(2):70.
- 3 欧忠平,孙 红等.理化检验(化),1991,27(5):259.
- 4 王茀孔.地质实验室,1994,10(4-5):277.
- 5 郭忠先,张淑云.地质实验室,1996,12(2):93.

(收稿日期 1996-07-16)

Spectrophotometric Determination of Gallium with 2,3,7-Trihydroxy-9-dibromodihy-droxyphenylfluorone and CPB

Xia Daopei, Huang Zhongping, Huang Huiping
(Department of Applied Chemistry, China University of Geosciences, Wuhan)

Abstract A sensitive colour developing reaction of Ga with DBHPF and cetylpyridinium bromide(CPB) was studied. The maximum absorption of the complex is measured at 578 nm in the pH range of 6.1 \sim 6.6, and the molar absorptivity is 1.87 \times 10⁵ L • mol⁻¹ • cm⁻¹. Beer's law is obeyed for 0 \sim 6 μ g Ga₂O₃/25ml. The method has been applied to the determination of Ga in ores with satisfactory results.

Key words Spectrophotometry, DBHPF, Gallium