低渗透率岩心气液相对渗透率 及其敏感参数的影响

江义容 戴志坚 李克文

(中国石油天然气总公司石油勘探开发科学研究院)

主题词 岩心分析 相对渗透率 液相 渗透率 绝对渗透率 粘土矿物

摘 要获得比较可靠的低渗透油藏的油气相对渗透率曲线,对于开发好具有易挥发性、高溶解油气比特征的油田是十分重要的。给出了空气渗透率低达0.1×10⁻³~60×10⁻³µm²岩心的非稳定流油气、水气相对渗透率,对新疆吐哈、俄罗斯科里金、海南等地区的40余块低渗透率样品进行了测试,得到了比较合理的低、特低渗透率油气、水气相对渗透率曲线。考虑了基准渗透率对相对渗透率的影响和驱替压力(速度)对气相端点相对渗透率的影响。结果表明:不含束缚水饱和度时的岩样渗透率越低,岩石物性越差,油气相对渗透率比值越小;基准渗透率不准确或失真是引起气相相对渗透率太于1的异常现象的原因之一,影响整个相渗曲线形状;在线性渗流范围内,驱替压力(速度)对残余油下的气相相对渗透率基本上没有影响。首次提出了低、特低渗透率油气、水气相对渗透率

实验步骤

油气、水气的相对渗透率实验采用美国的103号 {器,特低渗透率测试使用高压夹持器和高压气体 I湿器,计量部分不变。

岩样经钻、切、洗油后再烘干,测定孔隙度、渗透 «,抽空饱和地层水,然后在高压(13.6MPa)下进行 型和,将样品装入岩心夹持器内测水相渗透率,采用 =稳定流恒压法测定水气相对渗透率。油气相对渗 基率实验与前述方法基本相同,岩样饱和水后建立 三缚水饱和度,再测束缚水饱和度下的油相有效渗 基率,进行气驱油相对渗透率测定;如果未建束缚水 型和度(表1样号中以"G"标识者),则岩样首先抽空 型和实验油,再加压饱和,测定油相绝对渗透率,然 言进行气驱油相对渗透率测定。实验操作采用美国 言心公司标准,气液相对渗透率计算采用 JBN 方 素。相对渗透率等于油气、水气等各相的有效渗透率 常以基准渗透率。 实验结果与分析

1 油气相对渗透率特征

由低、特低渗透率岩样的油气综合数据表(见表 1)可知,建立束缚水饱和度的岩样,空气渗透率范围 为7.23×10⁻³~69.82×10⁻³ μ m²,平均值为32.26× 10⁻³ μ m²,平均两相渗流范围为47.15%,残余油饱 和度为14.42%,最终平均采收率为76.72%。在未建 束缚水饱和度的样品中,低渗透率样品的空气渗透 率平均值为18.258×10⁻³ μ m²,平均两相共渗范围 为41.57%,残余油饱和度平均58.43%,最终采收率 平均值为41.57%;特低渗透率样品的空气渗透率平 均值为0.123×10⁻³ μ m²,平均两相共渗范围为 36.45%,残余油饱和度平均值为63.55%,最终采收 率为36.45%。

(1)含束缚水样品与不含束缚水样品比较 含束缚水饱和度的样品比没含束缚水饱和度样

作者简介: 江义容,33岁,工程师;1984年毕业于西南石油学院开发系;现从事油层物理研究工作。地址:北京市910信箱采收率研究所,邮 政编码 100083。

品的油水两相共渗范围宽,最终采收率明显高。

表I 气驱油基础数据表 Table 1 Basic gas-oil displacement data from core samples

样号	空气渗透率 (10 ⁻³ µm)	束缚水 饱和度 (%)	两相渗 流范围 (%)	残余油 饱和度 (%)	最 终 采收率 (%)
2-52	11.90	42.59	48.91	8.5	85.2
5-30	7.23	42.36	38.34	19.3	66.5
391	20.67	33.90	57.80	8.3	87.4
41(2)	51.67	42.01	46.19	11.8	79.7
247(1)	69.82	31.30	44.50	24.2	64.8
275G	35.54	0.00	34.8	65.2	34.80
530G	7.23	0.00	48.0	52.0	48.00
252G	11.9	0.00	41.9	58.1	41.90
4-16G	0.098	0.00	37.4	62.59	37.41
4-2G	0.175	0.00	38.61	61.39	38.61
3-11G	0.096	0.00	33.33	66.67	33. 33

(2)低渗透率与特低渗透率样品比较

对于相同油藏,在不含束缚水时,低渗透率样品 比特低渗透率样品的油气两相共渗范围宽,残余油 饱和度低,最终采收率较高。特低渗透率样品的油气 相对渗透率比值位于低渗透率样品的下方(见图 1a),即在同一含气饱和度下,储集岩渗透率越差,其 油气相对渗透率比值越小。储集岩物性越差,其油气

Fig. 1 Effects of air and base permeabilities on oil-gas relative permeabilities

两相共渗范围越窄,残余油饱和度越高,最终采收= 较低,这种规律性变化,反映了气驱残余油饱和度 最终采收率受油气相对渗透率比值的影响和控制。

特低渗透率样品气水相对渗透率综合数据见。 2,其空气渗透率变化范围在0.467×10⁻³~12.9) 10⁻³µm²,平均值为4.6×10⁻³µm²,两相渗流范围³ 均值为35.6%,残余水饱和度为64.4%,最终采收² 平均值为35.6%。与不含束缚水的特低渗透率样品 的油气相对渗透率具有较为类似的特征,平均两机 渗流范围、残余水饱和度和最终采收率值基本相同

表2 气驱水基础数据表 Table 2 Basic gas-water displacement

data from core samples

样号	1-2	2-2	3-2
空气渗透率(10 ⁻³ µm ²)	12.9	0.467	0.530
两相渗流范围(%)	27.8	43.2	35.8
残余水饱和度(%)	72-2	56.6	64.2
采收率(%)	27.8	43.2	35.8

2 基准渗透率对相对渗透率的影响

(1)老化技术对基础渗透率影响

在相对渗透率实验中所测的束缚水时油相有效 渗透率,岩心老化后的大于岩心老化前的。这主要是 由于在地层温度和压力下,含束缚水的岩心与原油 接触经老化后,原油中的胶质、沥青质等极性物质可 达到吸附平衡,使岩石表面有一层吸附膜,抑制岩心 中粘土颗粒的释放和粘土膨胀^[1];而含粘土的岩心 老化前不具备这种能力,使得岩心束缚水下油相有 效渗透率老化后的大于老化前的。

因此,对于相同岩心,在油气、水气相对渗透率 实验中,如果基准渗透率不准确,则最终得到的油 气、水气相对渗透率数据不同,曲线形状不同,气相 端点相对渗透率也将不同,这就是造成相渗曲线异 常,气相端点相对渗透率值大于1的根本原因之一。

①如果选用老化后岩样,以束缚水饱和度下的 油相有效渗透率作为基准渗透率得到油气相对渗透 率值,没有出现异常曲线,且气相端点相对渗透率值 小于1(见图1b)。由2-52、5-30样品可知,对于相同岩 心,在相同驱替压力下,用油相绝对渗透率为基准渗 透率(见表3)来测不建束缚水的油气相对渗透率,气 相端点相对渗透率值也没有出现大于1的现象,而且 对特低渗透率的岩心,以油相绝对渗透率为基准,也

	Table 3 Base permeabilities							
地区	样号	空气渗透率	水相滲透率	束缚水时油相 有效渗透率	油相渗透率			
r								
海南	4	5.23	0.364	0.591				
	8	5.07	0.256	0.326				
	10	6.59	0.332	0.827				
	20	0.997	0.049	0.143				
	37	4.25	0.511	1.120				
	41	69.2	11.2	29.2				
	44	28.4	6.68	9.63				
	45	13.9	1.43	3.87				
	47	50.0	7.69	19.8				
	51	11.1	0.746	2.21				
	65	5.21	0.127	0.235				
	79	2.69	0.395	0.459				
	2-52	11.9		2.13	3.42			
	5-30	7.23		1.73	4.96			
	41(2)	51.67		7.89				
新	391	20.67						
疆	247	69.82						
	275G	35.54			20.97			
	4-16G	0.098			0.001 318			
	4-2G	0.175			0.008 05			
	3-11G	0.096			0.001 837			
俄罗斯	1-2G	12.9	3.4		0.782 4			
	2-2G	0.467	0.001 6					
	3-2G	0.53	0.001 8					

表3 基准渗透率数据表

没有出现油气相对渗透率异常现象。在测单相油测 绝对渗透率时,渗流速度和压力梯度呈直线且过原 点(见图2),属于达西流动,测得的油相渗透率较真 实地反映了其岩石物理性质。

②俄罗斯样品虽然空气渗透率低(见表3),但不 含膨胀性粘土及运移型粘土,水敏及速敏实验结果 基本相同,而且地层水与注入水的矿化度高达 350 000mg/L,因此在水气相对渗透率实验中完全 消除了水敏性,测得的水相绝对渗透率(见表3)代表 了真正岩石物理性质,其速度和压力梯度呈直线且 过原点,相关系数(r)高达0.999(见图2),气水相对 渗透率气相端点值没有大于1的异常现象。

(2)膨胀性粘土矿物对基准渗诱率影响

对于低、特低渗透率岩样,准确获得其单相液测 渗透率是至关重要的。它不但影响整个相对渗透率 曲线的形状,而且还影响其气相端点相对渗透率值。 经常会出现由粘土膨胀、颗粒运移所造成的较大敏 感性,引起水测渗透率的减小,或者造成单相流动的 渗流速度与压力梯度的直线不通过原点(见图3)。这 是由于岩心饱和水后,粘土及运移的颗粒与注入介 质发生了物理化学变化,形成水化膜,岩石孔喉变 窄,必须有一个附加压力梯度,克服阻力,才能开始 流动。在海南样品的水气、油气相对渗透率测试中, 其气相端点相对渗透率基本上大于1,据其扫描电镜

• 63 •

及粘土分析,粘土总量为20%,其中高岭石与伊蒙混 层相对含量分别为78.20%和22.00%, 岩心孔隙内 和粒间均为高岭石和泥质, 运移和膨胀型粘土含量 较大,因此岩心饱和水后测水相渗透率时,其颗粒运 移和粘土膨胀对岩心造成损害,使水测渗透率降得 很低,不能反映真实的岩石与流体特性。但相同的样 品做完水气相渗实验再建立束缚饱和度后, 岩心中 只含部分水,大部分饱和油,因而在一定程度上抑制 了粘土膨胀和颗粒运移(部分孔喉变小和堵塞),因 此束缚水时油相渗透率高于水相渗透率(见表3),油 气、水气、气相的相对渗透率值均大于1。

同理,新疆样品粘土含量为13.20%,膨胀性粘 土含量为40%,注入水矿化度不高,因此岩心饱和水 后测水相渗透率,再测得的束缚水饱和度下油相有 效渗透率值并不反映岩石流体的性质,它比岩心完 全饱和油的油相绝对渗透率明显小(见表3),而且比 岩心在原油里老化后的束缚水饱和度下油相渗透率 低。这使得其基准渗透率降低,导致相对渗透率值变 大,气相相对渗透率大于1。

3 驱替压力(速度)对末端点气相有效渗透率 的影响

在低、特低渗透率样品的油气相对渗透率测试 中,气相饱和度达到99.999%时,改变驱替压力测得 的残余油饱和度下气相有效渗透率没什么变化,可 见驱替速度对残余油时气体相对渗透率没有影响。 由残余油饱和度下测得的驱替压差与实测气体流速 关系曲线(见图4)可知,压力梯度与气体渗流速度呈 较好的线性关系,因此在残余油饱和度下改变驱替

图4 在残余油饱和度下气体流速与压力梯度关系图 Fig. 4 Relation between gas flow velocity and pressure gradient at residual oil saturation

压力,气体渗流属于线性渗流范围,不属于紊流,合 乎达西定律。直线不过原点是因为气体流动时岩心 内存在两相流体,即存在残余油。

结论与建议

1,对于相同油藏特低渗透率的样品(没有建立 束缚水饱和度),储集岩物性越差,其油气相对渗透 率比值越小,油气两相共渗范围越窄,残余油饱和度 越高,最终采收率较低。

2,基准渗透率对油气、水气相对渗透率有较大 影响,基准渗透率的失真是造成气相相对渗透率大 于1等异常现象的主要原因。对于低、特低渗透率岩 心,即使含比较少量的粘土矿物,渗透率降低仍较 大,因此在测水相相对渗透率时要特别慎重,建议使 用高矿化度注入水与地层水测定;在测试油气相对 渗透率过程中,建立束缚水时应尽量缩短岩样与水 接触时间,采用老化后的束缚水时油相有效渗透率 或油相绝对渗透率为基准渗透率;在测试低、特低渗 透率样晶的基准渗透率时,应至少严格测试高、中、 低3个速度的渗透率值,测正、反向渗透率,以减少因 岩心颗粒运移暂时性堵塞孔喉造成的渗透率失真。 得到了比较真实的基准渗透率数据,也就得到了可 靠的油气、水气相对渗透率数据。

3,测试油气、水气相对渗透率时,在气体流动呈 线性渗流条件下,残余油(或残余水)饱和度下的气 体相对渗透率不受驱替速度的影响。

参考文献

- Narahara, G. M. : Effect of Conate Water on Gas/Oil Relative Permeabilities for Water-Wet and Mixed-Wet Berea Rock; SPE 20503, 1990.
- 2 李克文等:气液相对渗透率的稳定流实验装置以及异常问题的 初步分析与研究;石油学报,1996。
- 3 Li Kevin, et al. : The Oil-Water Relative Permeability Behaviour of a Low Permeable Reservoir; 1995, Nov.
- 4 Amit K. Sarkar; Fines migration in two-phase flow; *JPT*, May, 1990.

(编辑 郭海莉)