如盾

• 矿床

东坪金矿床地质一地球化学找矿模式及找矿预测

李少众

(河北省崇礼东坪黄金矿业有限责任公司,崇礼 076350)

[摘 要]通过对东坪金矿床1-70号脉地球化学特征的分析,建立东坪金矿床地质—地球化学找 矿模式,归纳矿体、矿化体和非矿化体的判别标志,在矿山找矿预测工作中效益显著。

[关键词]地质-地球化学 找矿模式 东坪 金矿床

[中图分类号]P618.51 [文献标识码]A [文章编号]0495-5331(2002)01-0027-04

1 地质特征

东坪金矿床位于尚义—崇礼—赤城韧性剪切带 南侧,是产于碱性正长杂岩中的典型金矿床。碱性 正长杂岩体侵入于太古宙花岗岩—绿岩地体中,受 尚义—崇礼—赤城韧性剪切带内近 EW 向次级断裂 控制,北界为杨木洼—马丈子—转枝莲断裂,南界为 中山沟—红花背—东坪断裂。岩体呈 EW 向展布, 向南倾斜。主要岩性为角闪正长岩、辉石正长岩、中 细粒正长岩和石英正长岩等。

矿体呈脉群产出(图1),自西向东依次为26[#]、 22[#]、1-70[#]、3[#]和2[#]脉群,其中以1-70[#]脉群为主。 各脉群长数百米至几千米,宽300~400 m,总体走 向 NNE—NE 向,分别由数条至数十条 NNE 向和 NW 向雁列脉组成。

Q一第四系;ξ一碱性正长杂岩; Arc--花岗岩--绿岩地体;1--矿脉(群)及编号

矿床具有三大特点:①雁列式分布的矿体;②石 英脉型与钾蚀变岩型叠置的矿化;③多期次成矿作 用的贫硫富碲型矿石。 2 地球化学特征

2.1 微量元素含量特征

2.1.1 碱性岩体微量元素特征

对 26 个碱性岩石样品的微量元素进行分析,总 结其在东坪金矿区平面分布的规律性:

1) Cu、Pb 高值区(Cu > 10 × 10⁻⁶, Pb > 17 × 10⁻⁶)和 Sr、Ba、V 低值区(Sr < 518 × 10⁻⁶, Ba < 10 × 10⁻⁶, V < 20 × 10⁻⁶)与已知金矿化对应。

2)As 的高含量(>1.3×10⁻⁶)与成矿断裂相对应。

3)Au、Cu、Pb、Bi的分布趋势很相似,均为岩体 中西部低、南东部高,与金矿区一致;Sr、Ba、V的分 布趋势也很相似,均为岩体中西部高,东南部低。

2.1.2 矿石微量元素特征

对区内 24 件矿石微量元素进行分析,从微量元 素相关矩阵得出 Au 与 Ag、Se 等元素呈明显正相 关。在 R 型聚类分析图谱(图 2)中,金与 Ag、As、 Bi、Se、Sb、Ni、Co、V、Mn、Hg 等元素关系密切,为金 矿化的指示元素。

从方差最大旋转因子载荷矩阵(表1)可以得出 下列五组元素:

I : (Sb, Co, Ni, V, Zn, Mn)

II: (Ag, As, Bi, Se, Ni, Cu, Pb)

 $\mathbb{II}:(\operatorname{Au}_{\mathtt{v}}-\operatorname{Rb}_{\mathtt{v}}-\operatorname{Sr}_{\mathtt{v}}-\operatorname{Ba})$

IV:(Hg,Te)

V:(W)

I:在 F₁ 因子轴上,以 Co、Ni、V 等亲铁元素为 主,显示本组元素来自地壳深部特征,说明与金矿化 密切相关的元素与岩体有关。

[收稿日期]2001-03-20;[修订日期]2001-06-11;[责任编辑]余大良。 [作者简介]李少众(1969年-),男,1992年毕业于唐山工程技术学院地质矿产勘查专业,从事黄金矿山地质、生产计划与管理工作。

27

图 2 金矿石微量元素 R 型聚类分析图谱

表1 金矿石微量元素 R 型方差最大旋转因子载荷矩阵

元素	F ₁	\mathbf{F}_2	F ₃	F_4	\mathbf{F}_{5}
Au	-0.944	0.484	0.635	0.093	-0.326
Ag	0.268	0.933	0.037	0.128	0.059
As	0.385	0.905	0.003	0.006	0.002
\mathbf{Sb}	0.851	0.483	0.112	0.208	-0.033
Bi	0.182	0.957	0.127	0.047	-0.005
Hg	0.473	-0.024	-0.002	0.55	-0.349
Rb	-0.142	0.011	-0.763	-0.329	0.021
Se	0.095	0.879	0.102	-0.144	0.008
Те	0.093	-0.014	0.06	0.86	0.176
W	-0.094	-0.013	0.25	0.11	0.828
Co	0.97	0.152	0.107	0.098	-0.031
Ni	0.816	0.542	0.116	0.064	-0.001
V	0.888	0.347	0.011	-0.022	-0.083
Cu	0.031	0.61	0.269	-0.226	-0.07
Pb	0.471	0.775	0.015	0.167	0.315
Zn	0.858	0.462	0.084	0.108	0.03
Mn	0.958	-0.159	0.185	0.058	0.032
Sr	-0.177	-0.112	-0.816	0.077	-0.28
Ba	-0.261	-0.142	-0.748	0.211	-0.317

Ⅱ:F₂上为一组典型的多金属元素,以Ag、Cu、Pb、As、Bi为主,反映了该区一次广泛的金矿化作用,同时亦是一次主要的成矿作用。

Ⅲ:主端为 Au,负端为 Rb、Sr、Ba。一般认为, Rb、Sr、Ba 等元素与长石矿物有关,代表了该区金矿 床广泛发育的钾长石化蚀变,指示了钾长石化蚀变 与金矿化的密切关系。

Ⅳ:Hg和Te在化探中作为找金重要的指示元素,代表了一次金成矿用。

V:W元素代表的意义不明,但它是较深成的 后生金矿的常见元素。

2.1.3 蚀变岩石微量元素特征

从3个剖面采取20个样品对1-70号脉群蚀 变岩石微量元素进行分析,从围岩至强钾长石化蚀 变带及矿体,微量元素变化规律为:

Au、Ag、Cu、Pb、Zn、Te、W、Bi、Rb为带入组份, V、Sr、Ba为带出组份,其它微量元素表现不明显。 其中 Pb、Zn、Te 从围岩至蚀变岩及矿体,其含量趋 于正相关,Sr 的变化趋于降低,它们对蚀变强度及 岩石含金性有一定的指示意义。

2.2 矿体元素组合特征

对1-70号矿体各中段进行系统取样,对其主要地球化学参数分析结果如表2。

2.3 原生晕分带特征

2.3.1 原生晕轴向分带特征

由表3知,矿体上部元素组合Au、Ag、Pb等为弱 异常,As、Sb、Ba等为强异常;矿体下部元素组合Au、 As、Ag等为弱异常,Bi、Mn、Mo、W等元素为强异常。

表2 主要地球化学参数分析结果

截面(m)	元素组合	标型元素	相关指数
1620	Au As Sb Hg Te Ba Pb W Cr Ti Bi Sn Mo Ag	Au As Te Pb Mo Ag	-0.844
1584	Au As Sb Hg Te Sr Ba Pb Mo Bi Ag	Au As Te Pb Mo Ag	- 12.91
1538	Au As Sb Hg Te Ba Cu Pb W Cr Bi Sn Ag	Au As Te Bi Ag	-10.32
1503	Au As Sb Hg Te Ba Cu Pb Bi Mo Ag	Au As Te Pb Bi Ag	-0.89
1464	Au As Sb Hg Te Sr Pb Bi Ag	Au As Sb Te Bi Ag	2.43
1427	Au As (Sb) Hg Te Sr Ba B Bi Mo Ag	Au As Sb Te Bi Ag	1.56
1390	Au As Sb Hg Te Sr Ba B Cu Pb W Cr Bi Zn Ag	Au Te Pb Te Bi Ag	1.28
1375	Au As Hg Te Sr Ba B Cr Pb W Cr Bi Sn Zn Ag	Au As Cu Pb Zn Ag	1.29

矿体轴(垂)向变化序列如下:

 $(Hg) \cdot As \cdot Sb \cdot Te-Cu \cdot Pb \cdot Ag \cdot Au-Bi \cdot W \cdot Mo \cdot (Cr) \cdot (Co)$

矿体前缘元素 矿体中部元素 矿体尾部元素

由此确定矿体剥蚀程度判别参数:矿体前缘应 具有 As、Hg 元素组合,并出现高含量,而 Au 含量 >1×10⁻⁶;矿体尾部元素组合含量低,相关指数为 正值, As/Bi比值 > 40, As · Sb · Hg/Bi · Sn · Mo 比值 > 20; 矿体尾晕出现 Bi、Mo、Sn、Mn 等元素的 高含量, 而 As、Sb、Hg 等元素含量偏低,相关指数为 负值, As/Bi 比值 < 1, As · Sb · Hg/Bi · Sn · Mo 比 值 < 3。

2.3.2 地球化学含矿性判别特征

表	3 1	- 70*	矿体	各中段	元素平	Z均含	量和	
元素分带指数比值表 10 ⁻⁶								
中段 (m)	1620 (3)	1584 (3)	1538 (3)	1503 (3)	1464 (3)	1427 (3)	1390 (3)	1375 (3)
Au	39.13	24.92	10.07	79.95	56.67	3.27	5.73	5.03
As	3.47	3.33	2.80	2.60	1.87	2.87	2.13	2.67
Sb	0.87	0.53	0.60	0.70	2.10	0.50	0.50	0.40
Hg	0.023	0.023	0.025	0.036	0.035	0.025	0.036	0.036
Te	1.93	2.48	2.01	10.7	1.21	5.76	2.21	0.71
Sr	68.0	240.0	60.0	93.0	163.0	163.0	93.0	217.0
Ba	235	467	377	417	983	603	600	483
В	7.1	6.0	5.7	7.1	5.1	6.2	14.2	9.5
Cu	17.6	19.1	28.9	35.1	10.9	16.9	33.9	1346.3
Pb	1046.7	258.5	78.9	507.4	74.7	34.01	1231.1	253.0
W	20.0	12.7	19.0	8.2	7.1	10.0	18.3	19.3
Cr	42.9	25.0	44.9	30.9	30.6	29.1	33.0	33.3
Bi	0.57	0.47	9.83	3.07	25.20	4.53	1.10	0.67
Sn	1.8	1.0	1.5	1.3	1.2	1.3	1.4	1.6
Mo	93.67	16.30	3.77	8.55	3.05	4.49	2.84	1.14
Zn	43.6	22.9	20.3	57.6	12.2	18.4	106.9	190.6
Ag	4.98	4.50	1.55	4.02	2.12	1.54	9.86	18.74
As/Bi	47	63.5	2.83	7.64	0.745	6.188	16.39	44.5
Sb/Mo	0.093	0.327	1.663	0.828	6.75	1.131	2.0	3.25
Ag/Au	0.127	0.178	0.163	0.05	0.036	0.092	0.73	0.26
$\frac{As + Ba}{Bi + Mo}$	0.704	3.614	4.310	5.750	2.640	6.378	16.67	36.67
 $\frac{As \cdot Sb \cdot Hg}{Bi \cdot Sn \cdot Mo}$	0.590	2.270	2.133	2.571	2.383	2.649	2.356	3.860

括号中数为样品数,由河北保定物探研究所测试。

根据采取的133件样品分出矿体、矿化体和非 矿化体不同类型的群体,以正长岩杂岩体的元素含 量进行标准化,计算各群体元素的衬度值,并进行 R 型聚类分析,得出表4。

由表4知,工业矿体的衬度值一般高于矿化体和非矿化体。工业矿体突出的标型元素是高含量的Au、Te、Mo元素组合,从元素对比值明显将工业矿体(如1[#]、2[#]脉)和矿化体、非矿化体分开。从工业矿体向矿化体、非矿化体Au/As比值逐渐降低,工业矿体 Au/As比值>7,As·Sb·Ag/Te、Ag·As·Sb/Mo比值呈升高趋势。

- 3 找矿预测
- 3.1 找矿模式及找矿标志
- 3.1.1 找矿模式(图3)

4—石英脉型金矿;5—蚀变岩型金矿;6—原生晕内带;7—原生 晕中带;8—原生晕外带;9—剥蚀线;10—水平中段

3.1.2 找矿标志(表5)

3.2 找矿预测

通过地质踏勘工作,首先由地质特征判别成矿 规模,然后用地球化学找矿模式、找矿标志分析、判 别结果,再进行工程验证来指导矿山找矿工作。

对主要(矿)脉体地表、坑道进行取样,分析结 果如表6。

农4 创体、矿化体、非矿化体地球化子疗疗标志							
	1 号脉	2 号脉	22 号脉	76+36 号脉	矿化体	非矿化体	
Au/As	15.94	7.10	2.36	4.02	1.56	0.006	
(Cu + Zn)/Pb	0.231	0.971	0.10	0.197	1.655	1.367	
As · Sb · Ag/Te	5.50	8.80		2.86	131.5	81.22	
Ag · As · Sb/Mo	0.730	2.350		0.312	23.92	80.48	
与金相关元素	As Ba Pb w Bi. Mo Ag Te	As Sb Te Pb Bi. W. Sn. Mo. Ag		Sb Cu Bi Ag Te	Sb Te W Mo Ni Bi Sn	TeBi 低相关	
元素组合	Au As Sb Hg Te Sr Ba Cu Pb W Cr Bi Sn Mo Ag	Au As Sb Hg Te Ba B Cu Pb Mn W Cr Bi Sn Mo A	ı g	Au As Sb Hg Te Sr Ba B Cu Pb Mn W Cr Ni Bi Mo Zn Ag	Au As Sb Hg Te B Cu Pb Mn W Bi Zn Ag	Au As Sb Hg Ba B Cu Pb Mn W Cr BiSn Ag	
标型元素	Au As Te Cu Pb Bi	Au As Hg Te Cu Pb		A u As Sb Te Sr Cu Ph W Mo Ag	Au As Sb Hg Cu Ph W Bi Ag	Au As Sb Cu W B i Ag	

4 矿体、矿化体、非矿化体地球化学判别标志

2002年

-	表 5 东坪金矿床地质一地球化学找矿标志							
项目	方法	石 英 脉 型	蚀 变 岩 型					
地质	地层 岩浆岩 主要矿物组合 控矿构造	太古宙花 海西期—— 黄铁矿、方铅矿、闪锌矿、黄铜矿、 NNE 向,NW 向倾与 NW 向	岗岩—绿岩 TTG 岩系 燕山期碱性正长杂岩体 铁的氧化物、碲化物、自然金等,为贫硫化物型 J,SW 倾二组雁列脉呈多字型构造格架					
	矿体形态蚀变特征	由走向 NNE 向、NW 向二组呈多字型联合控 矿,等间距分布,脉侧蚀变范围窄	总体走向 NNE—NE 向,由 NE 向雁行排列的早期构造控制蚀变范围,赋矿裂隙为 NNE、NW 走向单裂隙及 NNE 向裂隙两侧广泛发育的 NW 向次级微裂隙,微裂隙的发育程度控制了蚀变强度及蚀变范围,蚀变范围约 350 m。					
地球 化学	标型元素	Au As Te Cu Pb Bi Mo Ag Au/As≥2,Cu + Zn/Pb <1 As · Sb · Hg/Te <10,Ag · As · Sb/Mo <3	Au Ag As(Te) Pb Bi 含矿蚀变带为 Au Hg S r Ba 非含矿蚀 变带为 Sr Ba B Mn W Sn V Co Ni					
	轴向分带 纵向分带 横向分带	前缘(Hg)As Sb Te – – – Cu Au – Pb – Zn – 内帯 Au – Ag – Mo,中帯	Pb Ag Au – – – – 尾晕 Bi W Mo(Cr)(Co) - Sb – Cu – Mo – Ag – – Te Cu – Zn – Sb – Bi,外带 Pb – Hg – As					
	隐伏矿体判别标志	前缘:Au、Hg组合,As/Bi>40,As·Sb·Hg/Bi •Sn·Mo<3	·Sn・Mo>20 尾晕:Bi、Mo 组合,As/Bi <1,As・Sb・Hg/Bi					

表6 矿(脉)体地球化学综合评价

序号	脉号	标型元素	As/Bi	相关指数	判别类型	矿体位置	综合评价
1	2#1464 中段	Au As Ag Hg Te Bi	1.88	-0.48	C	中上部	矿休中部
2	转枝莲	Au As Ag Cu Pb Bi	2.653	1.39	C(B)	中上部	矿 段中上部
3	西坪22#脉	Au Te Cu Pb Ag Mo Bi	0.24	-14.4	C	矿尾	矿休最下部
4	庙沟 24 #脉	Au Ag W Bi Pb	0.692	-1.99	C	矿尾	体尾 部矿
5	庙沟 23 #脉	Au As Te Pb Bi Ag	0.361	-4.9	С	中上部	矿体下部
6	3 [#] 脉	Au(As)(Sb) Te Pb W Bi Ag	0.517	-0.517	C(A)	下部矿化	深部有盲矿休
7	43 [#] 脉	Au Pb Bi Mo Ag	0.615	-21.3	B(C)	矿化	无矿
8	44 [#] 脉	Au Sb Hg Bi Mo Ag Cu Pb	0.161	-17.8	A(C)	矿化	矿化
9	61 [#] 脉	Au Bi Ag Mo W Cr	0.50	-12.3	В	无矿化	无矿
10	59 [#] 脉	Au Bi W Ag Mo	0.37	- 10.29	В	无矿化	无矿
11	28 [#] 脉	Au As Sb Hg Ag Te Cu Pb Bi Mo	0.074	- 39. 87	Α	强矿化	矿化强烈
12	7#脉	Au As Cu Pb Bi Mo Ag	8. 42	10.05	Α	强矿化	矿化强列
13	4 [#] 脉	As Au Sb Pb Bi Ag	0.141	85.1	A	矿前缘	深 部有矿休
14	58 [#] 脉	Au As Mo Ag Cu Bi	2.67	-5.1	А	矿化	无矿
15	10 [#] 脉	Au As Sb Te Cu Bi Hg	0.068	-45.7	A(B)	矿化	矿化
16	11 [#] 脉	Au As Pb Bi	1.32	3.52	B(C)	矿化	矿化
17	22 [#] 脉	Au As Sb Bi Te Zn Ag Cu Pb	0.986	-1.30	C	矿尾	矿体尾部
18	39 [#] 脉	Au Ag Te Cu Pb	1.21	0.53	С	中—上部	矿休山下郊
19	8#脉	Au Sb Te Ag Sb	0.969	1.102	BC	1	矿休中上部
20	26 [#] 脉	Au Cu Pb Ag Bi Mo Zn	0.159	- 14.95	A		中山

矿山对主要地段进行工程验证,如1—70^{*}脉北 部 18~20 线、23^{*}、2⁶、2^{*}脉群 2—1 和 2—2 号脉相 邻部位、4^{*}脉等分别投入地探工程,获得金 785 kg; 同时对现有坑道控制如 24^{*}、22^{*}、2—1^{*}脉等地段进

行工程验证,矿体所处最低中段均为矿体尾部,这为 矿山节约了大量地探资金,利用地质一地球化学找 矿模式进行找矿、预测取得了很好的效果。

THE GEOLOGY – GEOCHEMISTRY PROSPECTING MODEL AND PREDICTION IN DONGPING GOLD DEPOSIT

LI Shao - zhong

(Dongping Gold Mining Co. Ltd., Chongli 076350)

Abstract: Based on the analyses of geochemical features of No. 1 - 70 vein in Dongping gold deposit, the geology – geochemistry model for ore prospecting is established, and distinguish guides for the ore, mineralizing and non – mineralizing bodies are also summarizes. Those yield notable results in ore prediction at the mine.

Key words: geology - geochemistry characters, prospecting model, Dongping

30