***** *短 文* *****

江苏海相软土压缩特性试验研究

缪林昌,张军辉,陈艺南

(东南大学岩土工程研究所, 江苏 南京 210096)

摘 要:对原状江苏海相软土样进行一维压缩和蠕变试验研究。试验数据表明,江苏海相软土的初始压缩指数 C_α和次 压缩指数 C_α与天然含水率和孔隙比具有一定相关性,尽管初始压缩指数 C_α和次压缩指数 C_α不是常数,C_α和 C_α与垂向 压力大小有关,C_c和 C_α在统计意义上又有相关性,且 C_α/C_c接近常数,基于 C_α/C_c比值可预测次固结变形,理论预测 结果与实测结果基本一致。

关键词: 江苏海相软土; 压缩变形; 蠕变; 固结

中图分类号: TU411.5 **文献标识码:** A **文章编号:** 1000 - 4548(2007)11 - 1711 - 04 **作者简介:** 缪林昌(1961 -),男,博士,教授,博士生导师,主要从事岩土工程的教学与科研工作。E-mail: lc.miao@ seu.edu.cn。

Study on compressibility of Jiangsu marine clay

MIAO Lin-chang, ZHANG Jun-hui, CHEN Yi-nan

(Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China)

Abstract: One-dimensional compression and creep tests on undisturbed soil samples of Jiangsu marine clay were performed. It was shown that the initial compression index, C_c , and the second compression index, C_{α} , were related with the natural water content, the initial void ratio and the vertical pressure. Although C_c and C_{α} were not constant, the two parameters were related in statistical data, and C_{α}/C_c was approximately a constant. The second consolidationary settlement could be predicted based on C_{α}/C_c . The results of theoretical prediction basically agreed with the measured data.

Key words: Jiangsu marine clay; compressible deformation; creep; consolidation

0 前 言

国内外关于软土的固结变形研究包括主固结变形 特性研究^[1-5]和次固结变形特性的研究^[6-7]。但大多是 将这两者分别进行研究和试验分析,研究软土变形时 选用模型由弹性模型发展到弹塑性模型,再后来考虑 变形的时间依赖性,引用流变理论和黏弹塑性模型。 这些人为地将主固结变形特性和次固结变形特性分别 单独进行分析研究有其优点,可分别深入地认识主、 次固结变形特性。由于软土变形特点的特殊性,人们 已经认识到软土的主、次固结有时很难严格界定,次 固结并不一定都是在主固结完成后在开始,两者之间 可能耦合在一起。因此,必须注意一个重要现象,对 同一种软黏土主、次固结变形特性之间是否有相关性 或联系?是的,Mesri等^[8]已经发现这一现象。本文基 于这一目的,对江苏海相软土进行大量室内主、次固 结试验,重新认识了其主、次固结变形特性。

1 固结试验研究

1.1 江苏海相软土的基本特性

江苏海相软土天然含水率最小值为 47.2%,最大 值为 92.0%,平均值为 69.8%,天然含水率大于液限; 孔隙比最大值为 2.56,最小值为 1.27,平均值为 2.17; 液性指数最大值为 3.21,最小值为 0.85,平均值为 2.09;压缩系数最大值 4.1 MPa⁻¹,最小值为 0.9 MPa⁻¹, 平均值为 2.386 MPa⁻¹。这些指标说明江苏海相软土是 天然含水率高、压缩性大、承载能力低的淤泥沉积物。 表 1 给出了江苏海相软土的物理力学指标统计数据。 1.2 压缩试验

试验土样为原状土样,压缩试验的过程中尽可能 减少对试样的扰动。试验针对不同深度试样进行的。 图 1 列出两个不同深度土样的压缩试验的 e - lgp 曲 线。根据对 e - lgp 曲线分析表明江苏海相软土基本上 属于正常固结, p'_{o} / σ'_{v} 的比值介于 0.92~1.05 之间。 图 2 给出了江苏海相软土的初始压缩指数 C_{o} 与土的天 然含水率及初始孔隙比的关系图,这表明 C_{o} 与土的天

基金项目:国家自然科学基金资助项目(50478072) 收稿日期:2006-10-18

ladie 1 Physical and mechanical indices of Jiangsu marine soft clay											
项目	含水率 /%	孔隙比 e	饱和度/%	液限/%	塑限/%	塑性 指数	液性 指数	固结系数 /(10 ⁻³ cm ² *s ⁻¹)	压缩系数 /(MPa ⁻¹)	黏聚力 (固 快) /kPa	摩擦角 (固 快) /(°)
平均值	69.8	2.17	98.80	50.50	24.26	23.42	2.09	0.48	2.39	8.07	5.25
最大值	92.0	2.56	100.00	67.70	29.47	36.61	3.21	2.46	4.10	20.00	9.00
最小值	47.2	1.27	95.00	38.07	20.22	20.50	0.85	0.102	0.90	1.70	1.40
标准差	11.4	0.28	1.17	7.46	3.69	5.69	0.28	0.64	0.50	3.57	1.59
变异系数/%	18 3	16 75	1 18	16 74	14 22	23.81	19.92	86.95	38 63	35.66	20.14

图 1 不同深度土样的 e-lgp 曲线

Fig. 2 Relation ship among C_c , w_0 and e_0

然含水率及初始孔隙比具有较好的相关性。图 3 显示 了 $C_c 与 \sigma'_v / \sigma'_p$ 比值的变化关系,当 σ'_v / σ'_p 小于 2.5 时, C_c 随 σ'_v / σ'_p 增大而增大;而当 σ'_v / σ'_p 大于 2.5 之后, C_c 基本上趋于稳定,这说明江苏 σ'_v / σ'_p 海相软土的初 始压缩指数 C。与竖向荷载的大小密切相关。

Fig. 3 Relation between $C_{\rm c}$ and $\sigma'_{\rm v} / \sigma'_{\rm p}$

2 一维蠕变试验

原状海相软土的一维蠕变试验的目的是研究分析 不同垂向压力作用下变形随时间的变化情况,图4为 不同深度土样的一维蠕变试验结果。根据这些试验结 果进行分析,得到了 C_{α} 与 σ'_{v}/σ'_{p} 的关系图,图5表明 C_{α} 不是常数,它随 σ'_{v}/σ'_{p} 变化而变化,当 σ'_{v}/σ'_{p} 较小 时(σ'_{v}/σ'_{p} <3时), C_{α} 随 σ'_{v}/σ'_{p} 增加而增大,当 σ'_{v}/σ'_{p} >3时, C_{α} 的这种变化减缓。

图 4 同一深度土样在不同垂向压力作用下的一维蠕变曲线 Fig. 4 One dimensional creep curves of samples at the different vertical pressures same depth

2007年

图 5 $C_{\alpha} \subseteq \sigma'_{\nu} / \sigma'_{p}$ 的关系图. Fig. 5 Relationship between C_{α} and $\sigma'_{\nu} / \sigma'_{p}$

3 讨 论

对同一深度的土样测得的初始压缩指数 C_c 和次 压缩指数 C_α 进行对比分析,图 6 给出了 C_c 和 C_α 的关 系图。尽管这两个刻画土的压缩变形的参数并非常数, 但它们的相关比值 $C_\alpha/C_c=0.042$,即 C_α/C_c 接近常数, 这表明江苏海相软土的初始压缩指数 C_c 和次压缩指 数 C_α 具有相关性,但这种相关性只是统计意义上的相 关性。

图 6 海相软土初始压缩指数与次压缩指数的关系图

Fig. 6 Relationship between C_c and C_a

图 7 给出不同垂直压力作用下垂向变形与时间对 数曲线,由图7可以看出由于垂直压力不同压缩曲线 的切线斜率有明显的变化点,可近似将压缩曲线的切 线斜率有明显的变化点对应的时间定义为 to (垂向压 力≤400 kPa)。同时注意到 t_n的大小与垂向压力的有 关,随着垂向压力的增大变形发展与稳定的时间就增 大,固结完成所需的时间 t_b 变长,也就是由于外部荷 载作用超孔隙水压消散的时间变长。另外,当垂直压 力比较大时(大于 600 kPa)压缩曲线趋于直线状,压 缩曲线的切线斜率也没有明显变化,这种情形无法区 分主固结和次固结,出现这种现象的原因,笔者认为, 土样在大应力作用下,土样不仅产生固结变形,同时 大应力作用土样的骨架也发生错位和移动产生变形, 两种变形的耦合难以分清哪种变形占优。而在中低压 力作用下土样骨架的变形相对较小,并需要时间积累 这种骨架变形才显示出来。

图 74m 深度土样垂向变形与时间对数关系曲线

Fig. 7 Relationship between vertical strain and lgt for samples 4 m in depth

4 次固结变形计算

对某种土样/地基的初始孔隙比、初始压缩指数、 初始压缩指数与次压缩指数的比值,以及主固结时间 等参数就计算次固结变形/沉降^[9]。其计算公式如下:

$$s = \frac{C_{\rm c}}{1 + e_0} \frac{C_{\alpha}}{C_{\rm c}} L_0 \lg \frac{t}{t_{\rm p}} \quad , \tag{1}$$

其中, L_0 为压缩层的厚度。根据试验结果,当垂向压 力为 100 kPa 或 200 kPa 时, t_p = 80 min,取 $C_c/(1+e_0)$ = 0.4, C_{α}/C_c = 0.042,利用式(1)对江苏海相软土的 蠕变试验结果进行预测分析,预测计算结果见图 8。 图 8 表明理论预测结果与试验结果基本一致。

图 8 蠕变试验中次固结变形预测分析曲线.

同样利用方程(1)预测路堤的工后沉降,连徐高 速公路连云港段 k15+260 断面的海相软土厚度近 15 m,陆地高度 4.7 m,路堤荷载 90 kPa,海相软土地基 的主固结时间 12 月,取 $C_c/(1+e_0)=0.4$, $C_{\alpha}/C_c=0.042$, 该断面 30 a 后工后沉降计算值为 37.2 cm,因此,建 议采用超载预压让沉降提前完成,以满足规范要求, 实际工程已接受这一建议,并证明预测是有效的。

5 结 论

(1) 江苏海相软土的初始压缩指数 C_c与土的天 然含水率和孔隙比具有一定相关性。

(2) 江苏海相软土的初始压缩指数 C_c 与次压缩 指数 C_{α} 不是常数,与垂向压力有关,当 σ'_v/σ'_p <2.5~ 3 时, C_c 和 C_{α} 随 σ'_v/σ'_p 增大而增大;当 σ'_v/σ'_p >2.5~ 3 时, C_c 和 C_{α} 趋于稳定, C_{α}/C_c 值接近常数。

(3) 在压缩试验中,当施加的垂向压力小于等于 400 kPa 时,可由垂向变形时间对数曲线上近似地估计 出主固结时间 *t*_p, *t*_p 随垂向压力增大而增大;但当垂 向压力大于等于 600 kPa 时,由于高压力的作用使得 土骨架变形明显增大,无法区分固结变形和骨架变形 占优。

(4) 基于 C_a /C_c 比值以及 t_p 等参数值,可以预测 土样的次固结变形,依据这一原理可预测实际工程中 的工后沉降。

参考文献:

- BJERRUM L. Engineering geology of Norwegian normally consolidated marine clays as related to the settlements of buildings[J]. Geotechnique, 1967, 17(2): 83 - 118.
- [2] LADD C C, FOOTT R, ISHIHARA K, et al. Stress-deformation and strength characteristics[C]// Proc 9th Int Conf Soil Mech Found Engng, Tokyo, 1977: 421 - 494.
- [3] LEROUEIL S, KABBAJ M, TAVENAS F, BOUCHARD R.

Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. Geotechnique, 1985, **35**(2): 159 - 180.

- [4] GIBSON R E, SCHIFFMAN R L, CARGILL K W. The theory of one-dimensional consolidation of saturated clays II: finite nonlinear consolidation of thick homogeneous layers[J]. Can Geotech J, 1981, 18 - 2!, 280 - 293.
- [5] 沈珠江. 软土工程特性及软土地基设计[J]. 岩土工程学报, 1998, 20(1): 100 - 111. (SHEN Zhu-jiang. Engineering characteristics of soft soil and design of soft soil ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100 - 111. (in Chinese))
- [6] 赵维炳, 施建勇. 软土固结与流变[M]. 南京: 河海大学出版社, 1996. (ZHAO Wei-bing, SHI Jian-yong. Consolidation and rheology of soft soil[M]. Nanjing: Hohai University Press, 1996. (in Chinese))
- [7] 缪林昌. 江苏沿海地区高速公路海相软土地基变形特性与应用研究 [R]. (MIAO Lin-chang. Strain features and application study of expressway in Jiangsu marine clay region[R]. 2003. (in Chinese))
- [8] MESRI G, VADHANABHUTI B. Secondary compression[J].J Geotech Geoenviron Eng, 2005, 131(3): 398 401.
- [9] MESRI G, STARK T D, AJLOUNI M S, CHEN C S. Secondary compression of peat with or without surcharging[J]. J Geotech Geoenviron Eng, 1997, 123(5): 411 - 421.
- [10] MORRIS P H. Analytical solutions of linear finite-strain one-dimensional consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 319 - 326.