饱和砂砾料液化后应力与变形特性试验研究

徐 斌, 孔宪京, 邹德高, 娄树莲

(1.大连理工大学海岸和近海工程国家重点试验室,辽宁 大连 116024; 2.大连理工大学土木水利学院,辽宁 大连 116024)

摘 要:利用高精度静 ~ 动两用三轴仪(试样尺寸 \$ 200 mm × 510 mm)进行了砂砾料液化后静力再加载试验,研究了 其应力应变特性。文中探讨了各种因素对砂砾料液化后静剪切强度的影响。结果表明:砂砾料液化后静剪切强度主要 取决于围压,与液化前相对密度无关。

关键词:砂砾料;液化初始后;应力应变关系;相对密度

中图分类号: TU435 **文献标识码:** A **文章编号:** 1000 ~ 4548(2007)01 ~ 0103 ~ 04 作者简介: 徐 斌(1981 ~),男,博士研究生,主要从事土工试验技术和砂砾土工程特性方面的研究。E-mail: xubindut@student.dlut.edu.cn。

Laboratory study on behaviour of static properties of saturated sand-gravel after liquefaction

XU Bin, KONG Xian-jing, ZOU De-gao, LOU Shu-lian

(1. State Key Laboratory of Coatstal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; 2. School of

Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract: By use of the medium scale dynamic triaxial apparatus (specimen size $\phi 200 \text{ mm} \times 510 \text{ mm}$), the laboratory tests on the sand-gravel after liquefaction were performed. The stress-strain responses and the main factors influencing the strength of liquefied sand-gravel were studied. It was shown that the strength of liquefied sand-gravel was mainly dependent on the confining pressure.

Key words: sand-gravel composite; post-liquefaction; stress-strain relation; relative density

0 引 言

与单纯的液化相比,液化大变形导致的破坏往往 更严重且发生极为普遍,几乎每次地震导致的砂土液 化都会伴随大变形的发生。地震时地基液化后大变形 会引起地基的严重失效,产生灾难性的损失,如能对 液化后大变形进行较准确的预测,则可事先采取相应 的措施使这种损失降低到较小程度。对砂土地基地震 液化后的大变形进行预测,不少学者曾提出过预测方 法。Hamada 等均通过对试验及震害调查资料的回归 分析,建立了一些经验的大变形预估公式^[1]。Yasuda 等基于室内试验提出了一个反映砂土液化后应力应变 特性的双直线模型^[2]:刘汉龙等基于三轴试验结果提 出了砂土液化后应力 - 应变关系的双曲线模型^[3];张 建民等在 Ramberg-Osgood 模型的基础上,建立了一 个描述饱和砂土从液化前小应变到初始液化后大应变 范围的非线性本构模型^[4]。这些研究主要是针对砂土 进行的,砂砾料的液化特性因试验设备等原因目前研 究尚不充分,其液化后性状的研究更少,国内尚未见 相关报道。笔者基于室内试验成果对砂砾料液化后应 力与变形特性进行了分析,并初步探讨了砂砾料振动 液化后静载条件下不排水剪切强度的主要影响因素。

1 试样制备及试验仪器、方法与成果

1.1 土样性质和试验仪器

本试验采用的砂砾料主要物理力学性质指标为: 平均粒径 D_{50} =5.1 mm,不均匀系数 C_u =3.17,曲率系 数 C_c =0.35,最大干密度 ρ_{dmax} =2.203 g/m³,最小干密 度 ρ_{dmin} =1.818 g/m³,其颗粒组成见表 1。试验采用大 连理工大学自行研制开发的高精度液压伺服中型三轴 仪^[5] (ϕ =200 mm, H=510 mm)。该设备控制方式可为 应力控制也可为应变控制,而且试验过程中可方便地 从一种控制方式切换到另一种控制方式。设备由计算 机自动采集、处理各测量信号,并可随时中断;配有

基金项目: 国家自然科学基金资助项目(50278009,50578029,506790 93);教育部创新团队发展计划(IRT0518);大连理工大学海岩和近海 工程国家重点试验室主任基金(LP0505) 收稿日期: 2005 - 09 ~ 16

岩土工程学报

表1 砂砾料颗粒组成

Table 1 Grain size composition of sand-gravel composites

					-				
	<u>>40 mm</u>	40~20 mm	20~10 mm	10~5 mm	5~2 mm	2~1 mm	1~0.25 mm	0.25.01	-0.1
含量/%	0.1	8.5	28.66	12.94	10.06	<u> </u>	1.0.2.5 11111	0.23~0.1 mm	<0.1 mm
			20.00	12.94	10.90	8.5	24	5.53	0.77
致 据处埋、	图形显示	、绘图等计	·算机软件,	使试验与	个静力正	机裁试纸	中 动亚刺	主印山前职员	
八七一人人		11 A6 76			1 01. \1		:下,1121小科	衣现出剪版的	,狩忹,扎
ガガ元王日	目列化。具	性能稳定,	适用于砂砾:	料振动液	隙水压ナ	1由破坏孔	压逐渐降低	到卖 缺户在	「白樹レス
ルンチョムチョン	七七七十五十	A ALLIL L	IN N		1/4//4//La/		10.2011月4日以	、判令, 然 加 リ	、问谓大王
化矾挜和剂	以化应伊软	余件下排水	、以个排水剪	切试验。	一定值后	保持不亦	; 注音列	对压应亦曲雄	

1.2 试样制备、试验方法及方案

采用成型筒安装砂砾料试样,砂砾料分5层分别 击实至控制干密度。成样后采用通 CO2 气体饱和法对 试样进行饱和,并由孔隙水压力检测以计算饱和度。 孔隙水压力和侧压力增量的比值称为孔隙水压力系数 B。增加各向均等压力 $\Delta \sigma_3$,然后量测孔隙水压力增 量值 Δu , $B = \Delta u / \Delta \sigma_3$ 。所有试验中 B 值均大于 0.98。 各向等压固结的稳定标准为体变值在5 min 内不再增 加。固结完成后即施加循环荷载使试样充分液化,然 后在不排水条件下按一定的应变速率(0.006 mm/s) 施加静荷载,见图 1。本试验分别进行了①相对密度 $D_{r}=0.30$, 0.50, 0.60; ②初始有效固结压力 σ'_{30} 分别为 100、200 及 300 kPa; ③无扰动试样和完全液化后试 样。主要研究相对密实度和初始有效固结压力对无扰 动试样和液化后试样静加载条件下应力应变关系的影 响规律。其中液化后试样相对密度 Dr=0.60 条件下只 进行了围压 100 kPa 试验,共计 6 组 16 个试样。

图 1 砂砾料液化后静力特性试验加载过程

Fig. 1 Loading process of post-liquefaction tests

1.3 试验成果与分析

试验所得到的不同围压、不同相对密度条件下砂 砾料液化后的应力应变关系见图 2, 图中同时比较了 无扰动(未经液化试验)试样的应力应变关系。从图 中可看出砂砾料液化后试样和无扰动试样的应力应变 关系明显不同,无扰动试样随着液化应变增大,砂砾 料的切线模量逐渐降低,而液化后试样的应力应变关 系可分为3个阶段:①第一阶段,砂砾料切线模量随 着应变增加而增大,此阶段对应的应变范围较小,相 对密度 D_r=0.60, 围压 100 kPa 时仅为 0.056%, 试验 中测得最大值约在 2%左右; ②第二阶段, 砂砾料剪 切模量几乎不发生变化,应力应变曲线呈现良好的线 性,此阶段对应的应变范围相对很大,约为2%~10%; ③第三阶段,剪应力达到最大值后,砂砾料表现出理 想塑性流动状态,随着应变的增加应力保持不变。整

保持不受。注意到,孔压应变曲线的拐点和 应力应变曲线的拐点相对应。

与砂土液化后静力加载特性^[3]不同的是:砂砾料 液化后静加载过程中,初始阶段切线模量为零的时段 比砂土要短得多,随静荷载的增加,强度立即开始恢 复,这说明了砂砾料在液化一段时间后仍保持一定的 强度[6]。

图 2 砂砾料应力应变关系

Fig. 2 Stress-strain curves of sand-gravel

图 2 (c) 为不同相对密度砂砾料在相同围压下液 化后试样在静载条件下的应力应变曲线,图中可看出, 液化后砂砾料的静加载剪切强度主要与围压有关,不 同相对密度的试样最后均能达到同一强度,但达到峰 值强度时的应变值随相对密度减小而增大。这是因为 液化后砂砾料骨架结构几乎被完全破坏,静力再加载 时试样的强度不依赖于未液化砂砾料的初始相对密 度,材料的特性和试样围压对强度起决定性作用,初 始相对密度仅对强度的恢复速率有较大影响,达到峰 值时应变值随相对密度减小而增大。尽管围压、相对 密度将影响砂砾料液化后应力应变发展的量值,但应

力应变曲线的形状大体相同。无扰动试样静力再加载 后,从橡皮膜上可明显看出剪切带的形状,而液化后 试样静力再加载则无剪切带出现,侧向变形沿液化后 试样高均匀分布,见图 3。这是因为液化后试样静加 载时,较大的初始孔压使颗粒间的相互错动形成类似 稳态变形的流动。变形沿试样高均匀分布的现象导致 了砂砾料液化后应力应变关系的特殊性。

Fig. 3 Shape of different specimens after shear

1.4 应力路径分析

图 4 比较了未扰动砂砾料和液化后砂砾料静载应 力路径,由此可见,相同围压下不同相对密度的两种 试样(液化和未经液化)应力路径达到同一临界状态 线,不同围压临界状态线不重合,这表明砂砾料静加 载的临界状态线不唯一,与试验时的围压有关。但是, 不同围压下临界状态线近似平行,其在 p'轴上的截距 是因为砂砾料液化时孔压只能达到围压的 90%^[6],因 而液化后初始静加载时球应力不为 0。

2 应力应变曲线特性分析

图 2 可见砂砾料液化后施加静载,在较小应变范 围内模量逐渐增加至一定值后几乎不发生变化,加载 至破坏时,模量逐渐衰减接近于 0。对模量不变段拟 合直线,其与模量变化段的两个交点定义为(ε_{a1}, q_1)、 (ε_{a2}, q_2),见图 5。交点坐标的变化规律反映了围压 和相对密度对液化后应力应变关系的影响。

表 2 为不同试验条件下应力应变曲线模量稳定段 与模量变化段交点坐标值。从中看出,相对密度一定 时,围压增大,则 ϵ_{a1} 值增大,但 q_1 值变化不大,表明 相对密度一定的砂砾料试样经液化后再施加静载,模 量增大至最大时,试样所承受剪切应力对围压依赖性 不大。围压一定条件下,试样初始相对密度增大, ϵ_{a1} , ϵ_{a2} 及 q_1 值呈减小趋势,但对 q_2 影响不大,表明液化 后试样剪切应力达一定范围时,模量即开始逐渐衰减。

Fig. 5 Definition of intersection points

3 砂砾料液化后应力应变关系

3.1 三直线模型

将液化后应力应变曲线初始进入塑性流动状态时 对应的应力定义为临界应力 q_f,对应的应变为 ε_a,如 图 6。不考虑模量恢复和衰化阶段,应力应变关系可 近似用三段直线模拟,分别为初始模量恢复段、模量 稳定和衰化段及塑性流动阶段。这样砂砾料液化后的 应力应变关系可表述为

$$\begin{cases} q = a\mathcal{E}_{a} & (\mathcal{E}_{a} \leq \mathcal{E}_{a}) \\ q = b\mathcal{E}_{a} + c & (\mathcal{E}_{a1} < \mathcal{E}_{a} \leq \mathcal{E}_{af}) \\ q = q_{ult} & (\mathcal{E}_{a} > \mathcal{E}_{af}) \end{cases}, \qquad (1)$$

式中,q为偏应力, ε_a 为轴向应变, q_{ut} 为砂砾料液化 后强度峰值, ε_{at} 为定义的临界应变,均可由试验曲线 确定。a、b为斜率,可通过对各段模量与轴向应变关 系用最小二乘法拟合得出,因模量衰化段相比模量稳 定段范围相差较大,故b可近似认为模量稳定段的模

图 6 定义破坏应力、应变 Fig. 6 Definition of critical stress and strain

表 2 不同试验条件下交点值

Table 2 Intersection points under different test conditions

围压	D_r=0.30				Dr=0.50				Dr=0.60			
/kPa	$\epsilon_{\rm al}$ /%	q_1/kPa	$\epsilon_{a2}/\%$	q_2/kPa	$\mathcal{E}_{al}/\%$	q_1/kPa	$\epsilon_{a2}/\%$	q_2/kPa	$\epsilon_{al}/\%$	q_1/kPa	$\varepsilon_{a2}/\%$	q_2/kPa
100	1.187	55.24	4.4556	470.46	0.454	43.06	3.070	453.88	0.056	6.470	2.315	492.1
200	1.505	56.71	8.445	952.52	0.729	44.50	5.692	934.54				
300	2.151	58.52	12.015	1190.2	1.133	47.52	8.537	1173.3				

表 3 不同试验条件下参数值

	Table 5 value of parameters under different test conditions											
<u> </u>	围压	$D_{\rm r}=0.30$				$D_{\rm r} = 0.50$	$D_r = 0.60$					
/	kPa	<i>a</i> /100 kPa	<i>b</i> /100 kPa	c/ kPa	a/100 kPa	<i>b</i> /100 kPa	c/ kPa	<i>a</i> /100 kPa	<i>b</i> /100 kPa	c/ kP		
	100	27.92	111.7	-99.2	56.91	174.7	-53.1	69.32	198.6	-7.3		
2	200	22.60	124.3	-152.1	36.63	171.5	-98.4					
	300	16.31	110.3	-202.4	25.16	147.5	-136.3					

量值。不同围压和相对密度条件下 a、b 和 c 值见表 3。 可看出围压相同时 a、b 均随相对密度增大而增大。

3.2 模型的验证

图 7 是砂砾料相对密度为 0.3、0.5 情况下试验曲 线与模型预测曲线。可以看出,模型预测值与试验值 吻合较好,且模型参数有一定的物理意义。模型不能 反映出整个静力再加载过程中模量的变化,但液化后 大变形的发生主要在模量恢复段和模量稳定段,因此 不影响模型的使用。

Fig. 7 Test and predicted curves

4 结 论

(1)液化后砂砾料试样与无扰动试样静剪切强度 差别不大。

(2)对砂砾料液化后试样施加静力再加载达到峰 值强度后,呈现出理想塑性流动状态。

(3)液化后砂砾料的静力再加载强度与未液化砂 砾料相对密度无关,主要依赖于试样的围压。

(4)砂砾料液化后静力再加载应力应变曲线可采 用三段直线模拟。 砂砾料液化后性状影响因素较多,本文仅对静力 再加载条件下相对密度、围压等因素进行了初步研究, 液化后动力条件下反应及液化程度等其它因素的影响 将是后续研究的重点。

参考文献:

- HAMADA M, YASUDA S, ISOYAMA R, et al. Observation of permanent displacements induced by soil liquefaction[J]. Proc JSCE, 1986,3(6): 211 - 220.
- [2] YASUDA S, YOSHIDA N, MASUDA T, et al. Stress strain relationship of liquefaction sands[C]// Earthquake Geotechnical Engineering. Rotterdam: Balkema, 1995,8: 11 - 816.
- [3] 刘汉龙,周云东,高玉峰. 砂土地震液化后大变形特性试验研究[J]. 岩土工程学报, 2002,24(2): 142 146.(LIU Han-long, ZHOU Yun-dong, GAO Yu-feng. Study on the behaviour of large ground displaycement of sand dur to seismic liquefaction[J]. Chinese Journal of Geotech Engrg, 2002,24(2): 142 146.(in Chinese))
- [4] ZHANG Jian-ming, WANG Gang. A constitutive model for evaluating s mall to large cyclic strainsof saturated sand during liquefaction process[J]. Chinese Journal of Geotech Engrg, 2004, 26(4): 546 - 552.
- [5] 孔宪京,张 涛, 邹德高,等. 中型动三轴仪的研制及微小 应变测试技术的应用[J]. 大连理工大学学报, 2005,45(1):
 79 84.(KONG Xian-jing, ZHANG Tao, ZOU De-gao, et al. Design of medium scale dynamic triaxial test apparatus and its application at small strains[J]. Journal of Dalian University of Technology, 2005,45(1): 79 84.(in Chinese))
- [6] 徐 斌, 孔宪京, 邹德高, 等. 饱和砂砾料振动孔压与轴向应变发展模式研究[J]. 岩土力学, 2006,27(6): 925 928.(XU bin, KONG Xian-jing, ZOU De-gao, et al. Study of dynamic pore water pressure and axial strain in sand-gravel composites liquefaction[J]. Rock and Soil Mechanics, 2006,27(6): 925 928.(in Chinese))