黄妙芬^①,牛生丽^②,孙中平^③,吴传庆^③,赵祖龙^①,化成君^①

(① 大连海洋大学,大连 116023;② 国家卫星海洋应用中心,北京 100081;③ 环境保护部卫星环境应用中心,北京 100029)

摘要:利用覆盖我国 4 大海区共 88 景图像数据,针对 4 波段 CCD 相机(HJ-1A/CCD1、HJ-1A/CCD2、HJ-1B/ CCD1、HJ-1B/CCD2)在水体中的信息采集特性进行分析。结果表明:(1) HJ-1A 和 B 星虽不是水色卫星,但其 CCD 相机在水体中依然有一定的信息,可作为水色遥感器服务于水环境;(2) HJ-1B/CCD1 在南海海域水体信息 采集过程存在明显的太阳耀斑现象,因而在水色信息提取时太阳耀斑是一个不可忽略的因子;(3) 无论是在一类 水体还是在二类水体,各遥感器的近红外波段皆存在水体信息采集为零的现象,其中 HJ1B-CCD2 尤为明显。利 用近 10 景涵盖了 HJ-1A/CCD1、HJ-1A/CCD2、HJ-1B/CCD1、HJ-1B/CCD2 数据,以及同时过境的 EOS/MODIS, 采用基于遥感器入瞳处总辐亮度的交叉定标方法进行交叉辐射定标,获取适用于水体目标的交叉辐射定标参数。 最后根据瑞利散射和气溶胶散射的计算值,以及获取的交叉定标系数,反推出 HJ1B-CCD2 可能接受到的灰度值。

关键词:环境一号卫星(HJ-1);水体信息;区域灰度值;近红外波段;交叉定标系数

doi:10.3969/j.issn.1000-3177.2010.04.013

中图分类号:TP79 文献标识码:A 文章编号:1000-3177(2010)110-0068-08

Analysis on Characteristics of the Water Information Collected by "HJ-1" Satellite Multispectral CCD Sensors

HUANG Miao-fen[®], NIU Sheng-li[®], SUN Zhong-ping[®], WU Chuan-qing[®], ZHAO Zu-long[®], HUA cheng-jun[®]
(1) Dalian Ocean University, Dalian 116023; (2) National Satellite Ocean Application Service, Beijing 100081;
(3) Satellite Environment Center, Ministry of Environmental Protection (SEC, MEP), Beijing 100029)

Abstract: The home-made satellites 'HJ-1A' and 'HJ-1B' were successfully launched in September 2008. Their role is to serve the country's disaster and environmental monitoring. The main sensors on the satellites are 4-band CCD cameras with a wide coverage, hyperspectral imager (HSI) and infrared cameras (IRS). In this paper, the water information characteristics of the 4-band CCD cameras (HJ-1A/CCD1, HJ-1A/CCD2, HJ-1B/CCD1, HJ-1B/CCD2) were analyzed. The results showed that (1) although HJ-1A and B are not water color satellite, but each sensor still has some information about the water, so it can be used as water color remote sensors for water environment study; (2) for HJ-1B/CCD1 during water information collection in the South China Sea exists an obvious phenomenon of solar flares, so in the extraction of water color information that should not be ignored; (3) whether in case 1 or in case 2, this situation happens, the water body information of near-infrared bands of each sensor is zero, especially of HJ1B-CCD2. The four visible and near-infrared spectral bands of HJ-1/CCD1, HJ-1A/CCD2, HJ-1B/CCD1 and HJ-1B/CCD2 were calibrated respectively using cross-calibration methods based on the EOS/MODIS. The latter has the high radiation precision, and simultaneously passed through the South China Sea. The Radiometric Calibration coefficients of water-body targets of "HJ-1" satellite multispectral CCD sensors were obtained and validated. Finally, according to the calculation value of rayleigh scattering and aerosol scattering, HJ1B-CCD2 should be able to receive the gray value; this provides a reference to the sensor data application.

Key words:environmrnt-1 satellite (HJ-1); water body information; regional gray value; near-infrared bands; cross-calibration coefficients

收稿日期:2009-09-23 修订日期:2009-10-25

基金项目:十一五"科技支撑项目"基于环境一号等国产卫星的环境遥感监测关键技术及软件研究"(2008BAC34B05-5);国家自然 科学基金项目"水体石油类污染遥感探测机理和识别模型研究(编号:40771196)。

作者简介:黄妙芬(1963~),女,广东汕头人(汉族),博士,教授,主要从事水色遥感和热红外遥感研究。

E-mail: hmf808@163. com

- 68 -

1 引 言

为提高我国灾害与环境监测的水平,我国建立了 环境与灾害预报小卫星星座。在"十一五"期间建成 的环境与灾害监测预报小卫星星座由2颗光学小卫 星和1颗合成孔径雷达小卫星构成,分别称为环境一 号A星(HJ-1A)、环境一号B星(HJ-1B)和环境一号 C星(HJ-1C)。HJ-1A/1B星于2008年9月6日成功 发射,HJ-1A星搭载了CCD相机和超光谱成像仪 (HSI),HJ-1B星搭载了CCD相机和红外相机(IRS)。 在HJ-1A和HJ-1B卫星上均装载的2台CCD相机 设计原理完全相同,以星下点对称放置,平分视场、并 行观测,联合完成对地划幅宽度为700km、地面像元 分辨率为30m、4个谱段的推扫成像。卫星的设计寿 命是3年,至今已经运行整一年了,其最主要的任务是 观测和采集地面灾害与环境遥感信息,表1为HJ-1A 和1B星搭载的覆盖多光谱可见光相机技术参数^[2]。

利用遥感技术对地进行观测,获取地面信息,了 解遥感器采集的数据特性是后续数据应用中极为关 键的环节之一。为此利用覆盖我国4大海区共88景 图像数据,针对 HJ-1A 和1B 星上分别搭载的2个 CCD 相 机(HJ-1A/CCD1、HJ-1A/CCD2、HJ-1B/ CCD1、HJ-1B/CCD2)的4个波段在采集水体目标信 息的特性进行分析,旨在为水色遥感研究提供参考。

在卫星遥感器数据的使用中,遥感器的定标 参数是至关重要的,它是定量化遥感的基础,尤其 海洋水色遥感对定量化的要求更高^[3]。我国的卫 星遥感器普遍缺少星上定标装置,HJ-1卫星也不 例外。2008年10月该卫星上天不久,相关部门就 在中国辐射定标场之一(敦煌)进行了第一次在轨 定标实验,获取第一批定标参数。虽然在中国辐 射校正场可以组织在轨辐射校正实验,但实验费 用昂贵。基于水体目标的交叉定标方法获取定标 辐射系数可以弥补这种不足,并为水体提供一种 新的获取较精确离水辐亮度的方法。为此利用多 时相近 10 景涵盖了 HJ-1A/CCD1、HJ-1A/CCD2、 HJ-1B/CCD1、HJ-1B/CCD2 数据,以及同时过境的

评均值
ļ

遥感器	Band1	Band2	Band3	Band4
HJ1A-CCD1	24	13	8	4
HJ1A-CCD2	29	14	10	7
HJ1B-CCD1	27	15	11	4
HJ1B-CCD1	25	8	4	1

EOS/MODIS,采用基于遥感器入瞳处总辐亮度的 交叉定标方法,获取适用于水体目标的辐射定标 系数。

表 1 HJ-1A/1B 宽覆盖多光谱可见光相机主要技术指标

项目	性能		
幅宽(km)	360(2 台组合≥700km)		
星下点地面像元分辨率(m)	30		
	B1	0.43~0.52	
₩ 四 -00-00-00-00-00-00-00-00-00-00-00-00-00	B2	0.52~0.60	
	B3	0.63~0.69	
	B4	0.76~0.90	
信噪比(S/N)	≥48dB		
	每个谱段设置 2 档增益		
增益 控制	控制,	各谱段分别可调	
增益控制 	控制, B1	各谱段分别可调 316/197	
增益控制 	控制, B1 B2	各谱段分别可调 316/197 334/195	
增益控制 动态范围 [W/(m²Srµm)]	控制, B1 B2 B3	各谱段分别可调 316/197 334/195 246/145	
增益控制 动态范围 [W/(m²Srµm)]	控制, B1 B2 B3 B4	各谱段分别可调 316/197 334/195 246/145 246/163	
增益控制 动态范围 [W/(m ² Srµm)] 中心像元配准精度	控制, B1 B2 B3 B4	各谱段分别可调 316/197 334/195 246/145 246/163 ±0.3 像元	
增益控制 动态范围 [W/(m ² Srµm)] 中心像元配准精度 量化值(bit)	控制, B1 B2 B3 B4	各谱段分别可调 316/197 334/195 246/145 246/163 ±0.3 像元 8	
增益控制 动态范围 [W/(m ² Srµm)] 中心像元配准精度 量化值(bit)	控制, B1 B2 B3 B4 相对	各谱段分别可调 316/197 334/195 246/145 246/163 ±0.3 像元 8 定标精度 5%,	

2 HJ-1/CCD 相机水体区域灰度值分析

HJ-1/CCD 相机的重要用途之一就是对我国水 环境状况进行监测和预报,因而了解其在水体中获 取的信息特性非常重要。利用覆盖我国渤海、黄海、 东海和南海4个海区的遥感数据进行水体区域灰度 值分析。在这4个海区中,渤海、黄海、东海、南海北 部和西部属于二类水体,台湾岛南部海域和三亚南 部海域属于一类水体。

在一类水体区域平均灰度值分析中,为保证数 据具有可比性,取 path/row 为 448/91 或 449/92 HJ-1 遥感图像,冬季以2月份图像为代表,夏季以8 月份图像为代表,统计结果见表 2~3。表 4~7 为 各遥感器相应波段在二类水体渤海、黄海、东海、南 海北部和西部的区域平均灰度值。

表 3 夏季 4 波段 CCD 在一类水体(南海)区域灰度平均值

遥感器	Band1	Band2	Band3	Band4
HJ1A-CCD1	38	25	21	14
HJ1A-CCD2	29	12	6	5
HJ1B-CCD1	35	23	21	13
HJ1B-CCD1	29	10	5	0

- 69 -

表 4 HJ-1A/CCD1 在二类水体区域灰度平均值

区域	Band1	Band2	Band3	Band4
兴凯湖	28	23	24	12
东海	36	26	25	16
台湾海峡 41		27	18	9
辽东湾 39		30	25	11

表 6 HJ-1B/CCD1 在二类水体区域灰度平均值

区域	Band1	Band2	Band3	Band4
雷州半岛附近海域	29	16	10	2
广东西部沿海	36	26	18	7
东海	34	24	21	12
辽东湾	46	34	29	16

表 5 HJ-1A/CCD2 在二类水体区域灰度平均值

区域	Band1	Band2	Band3	Band4
广东近岸海域	23	12	5	5
东海	26	13	8	6
渤海	27	17	14	8
北部湾	41	22	18	12

表 7 HJ-1B/CCD2 在二类水体区域灰度平均值

区域	Band1	Band2	Band3	Band4
广东沿海	24	7	2	0
雷州半岛附近海域	56	31	28	7
东海	28	9	3	0
珠江入海口	25	8	1	0

图 1 HJ-1B/CCD1 在南海海域上的太阳耀斑现象

在对图像数据分析过程,发现 HJ-1B/CCD1 在 采集水体信息时,存在明显的太阳耀斑现象,见图 1,这可能与环境一号 CCD 相机为非水色遥感器,其 观测角度没有针对水体特性而设计有关。因而如果 该遥感器要应用于水体的话,数据采集角度是一个 需要考虑的问题。在水体信息提取中,太阳耀斑作 为水色信息提取过程的一个噪声,在这种情况下不 能忽略而必须考虑如何去除。HJ-1A/CCD1 偶尔 也有太阳耀斑现象的出现。

3 HJ-1/CCD 相机近红外波段水体 信息特性分析

从表7可以看到,HJ-1B/CCD2近红外波段存 在为零的情况。根据海洋遥感信息采集原理,当不 考虑大气粒子多次散射效应时,HJ-1/CCD遥感器 接收的水体总辐亮度可由下式表示^[4]:

 $L_{t}(\lambda) = L_{r}(\lambda) + L_{a}(\lambda) + t_{d}(\lambda, \theta_{v})L_{s}(\lambda) + t_{0}$ $(\lambda, \theta_{0})L_{w}(\lambda) + L_{b}(\lambda) + t_{d}(\lambda, \theta_{v})L_{f}(\lambda)$ (1)

式中, λ 为波长(um); $L_t(\lambda)$ 为卫星探测的波长 为 λ 的辐亮度(Wm⁻²um⁻¹sr⁻¹); $L_r(\lambda)$ 为空气分子 瑞利散射的辐亮度(Wm⁻²um⁻¹sr⁻¹); $La(\lambda)$ 为大 气气溶胶米氏散射的辐亮度(Wm⁻²um⁻¹sr⁻¹); L_s (λ)为海表面镜面反射(Wm⁻²um⁻¹sr⁻¹)(可能包括 太阳耀斑的影响)(可以忽略); $L_w(\lambda)$ 为离水辐亮度 ($Wm^{-2}um^{-1}sr^{-1}$),离水辐射是被表层海水散射的 太阳辐射,不是海洋自发辐射,因此不用乘以发射比 (率); $L_f(\lambda)$ 为海面泡沫或"白帽"辐射(可以忽略) ($Wm^{-2}um^{-1}sr^{-1}$); $L_b(\lambda)$ 为来自水体底部的反射辐 射($Wm^{-2}um^{-1}sr^{-1}$)(因为选择的区域一般是较深 水域,因而此项可以忽略); $t_0(\lambda, \theta_0)$ 为太阳方向的 大气漫射透射率(无量纲); θ_0 是太阳天顶角; $t_d(\lambda, \theta_0)$ 是遥感器方向的大气漫射透射率(无量纲); θ_0 是

公式(1)去掉波长的符号及可忽略的项后,可简

化为

$$L_t = L_r + L_a + t_0 L_w \tag{2}$$

根据公式(2),在清洁水体,如果离水辐亮度 (L_w)为零,至少还有瑞利散射(L_r)和气溶胶散射 (L_a)的存在,所以遥感器探测到的总辐亮度从原理 上来讲不应为零,灰度值也就不为零。

对已经获取的涵盖我国 4 大海区(渤海、黄海、 东海和南海)共 88 景 HJ-1A/CCD1、HJ-1A/CCD2、 HJ-1B/CCD1、HJ-1B/CCD2 图像,逐景进行近红外 波段为零现象检测,统计结果见表 8。

遥感器	总景数	近红外为零景数	出现概率	存在灰度值≪5 景数	出现概率
HJ1A-CCD1	31	11	35 %	20	65%
HJ1A-CCD2	20	1	5 %	12	60%
HJ1B-CCD1	29	7	24%	13	45%
HJ1B-CCD2	28	27	96%	28	100%

表 8 近红外波段水体信息存在零值统计值

从表 8 可见,近红外波段水体信息为零现象最 严重的是 HJ1B-CCD2,出现的概率高达 96%,其次 是 HJ1A-CCD1(35%),再次是 HJ1B-CCD1(24%), HJ1A-CCD2 出现近红外为零的概率最小(5%),虽 然 HJ1A-CCD2 出现零的概率很小,但从获取数据 的整体来看,其红外和近红外的灰度值整体都是偏 低的。另外从全年数据的分布来看,HJ1B-CCD1 2008 年为零情况较多,2009 年以后明显改善。 HJ1A-CCD1 和 HJ1A-CCD2 的近红外波段灰度值 在 2009 年 7 月以后也得到了改善。 进一步对 HJ1A/CCD1、HJ1B/CCD1 和 HJ1B/ CCD2 图像分析表明,在我国的各个海区各遥感器 的都有近红外波段为零的情况。图 2 和图 3 是用 ENVI 软件按 HJ1B/CCD2 band3(R)、band4(G)、 band2(B)波段显示的各海区遥感图像和同一海域 (path/row:448/91)在不同时间获取的图像。其中 G代表的是近红外波段,从灰度值显示来看,其近红 外波段皆为零。从图 2 和图 3 可见,HJ1B/CCD2 在不同的海域在不同的时间,其近红外波段为零现 象比较突出。

图 2 HJ-1B/CCD2 band3(R)、band4(G)、band 2(B)波段合成图(图像中小红方框是对应灰度值显示位置)

图 3 HJ-1B/CCD2 同一海域近红外波段水体信息为零的时间序列图 (band3(R)、band4(G)、band 2(B)波段合成图,图像中小红方框是对应灰度值显示位置)

4 基于水体目标的交叉辐射定标

4.1 定标原理

卫星遥感器定标一般需要两个步骤:遥感器发 射前定标和遥感器在轨定标。遥感器发射前定标有 两种方法:一种是在实验室内,利用标准源对遥感器 的响应进行定标;另一种是野外定标,这是为克服室 内定标光源与太阳光谱有较大差异而导致的定标误 差的方法。遥感器在轨定标又分为:基于太阳/月亮 的星上定标;在轨外定标(替代定标);交叉定标。基 于太阳的星上定标系统,是利用直射太阳光照射已 知反射率的漫反射板,遥感器的整个光路对漫射板 进行观测,从而实现定标。基于月亮的星上定标系 统是利用月亮稳定的表面作为基准对仪器进行定 标。在轨外定标(替代定标)是利用地面大面积、均 匀的目标,在精确测量地表特性和大气特性的基础 上,结合辐射传输计算,得到卫星入瞳处的辐亮度, 从而得到定标系数;我国的辐射定标场(敦煌和青海 湖)基本采用的是这种方法[5~7]。交叉定标是指利 用一个已知高精度的遥感器数据校正另外一个遥感 器,目前交叉定标方法主要有两种^[8~9]:(1)基于遥 感器入瞳处总辐亮度的方法;(2)基于离水辐亮度的 方法。

基于遥感器入瞳处总辐亮度的相对辐射定标方法,就是根据 MODIS 提供的归一化辐亮度值,将其 作为 HJ-1 对应波段的归一化离水辐亮度求出对应 的离水辐亮度 L_w,然后根据卫星过境时遥感器和太 阳的观测几何、臭氧浓度、气溶胶浓度和大气压,分 别求出瑞利散射 L_r、气溶胶散射 L_a和大气漫散射 透过率 t₀,再根据公式(2)得到模拟的 HJ-1 对应辐 亮度值^[6]。其计算流程见图 4。

图 4 基于遥感器入瞳总辐亮度的交叉定标流程图

4.2 定标数据源

相对定标区域的选取一般要求为清洁水体。 我国的东海、黄海、渤海主要是二类水体区域,只 有南海包括了二类水体和部分一类水体区域,因 而作交叉定标,选择南海区域最为理想,通过分析 已经获取的南海和台湾一带的 HJ-1A/CCD1、HJ-1A/CCD2、HJ-1B/CCD1、HJ-1B/CCD2 图像,发现 在晴空的清洁水体区域,各波段的灰度值非常低,鉴 于上述原因,在实际定标时选择次清洁水域作为定 标区域。

由于 HJ-1 卫星的回归周期是 31 天,加上南海

- 72 -

海域大部分时间为云覆盖,因而数据获取以及数据 质量受到限制,加上还需有准同步过境的 MODIS

数据,这使得目前对每个遥感器只能各选择2景图 像进行交叉定标,详细信息见表9。

表 9 HJ-1/CCD 和 EOS/MODIS 交叉定标数据

遥感器名称	过境日期	定标区域	HJ-1 文件名	EOS/MODIS 文件名
HJ-1A/CCD1	20081228	台湾南部海域	HJ1A-CCD1-448-91-L20000049825	A2008363051000. L2_LAC
HJ-1A/CCD1	20090205	台湾南部海域	HJ1A-CCD1-449-91-20090205-L20000063491	A2009036052000. L2_LAC
HJ-1A/CCD2	20090312	南海海域	HJ1A-CCD2-454-92-20090312-L20000079776	A2009071055000. L2_LAC
HJ-1A/CCD2	20090116	南海海域	HJ1A-CCD2-449-91-20090116-L20000056859	A2009016054500. L2_LAC
HJ-1B/CCD1	20081129	台湾南部海域	HJ1B-CCD1-448-91-L20000037052	A2008334054000, L2_LAC
HJ1B-CCD1	20090611	台湾南部海域	HJ1B-CCD1-448-92-20090611-L20000126651	A2009162053000, L2_LAC
HJ-1B/CCD2	20090417	东海海域	HJ1B-CCD2-448-80-20090421-L20000101506	A2009071055000. L2_LAC
HJ-1B/CCD2	20090526	台湾南部海域	HJ1B-CCD2-448-91-20090526-L20000118938	A2009146053000. L2_LAC

4.3 **计算定标系数**

在海洋遥感中常用的定标方法是采用定标模型,最简单的定标公式是线性公式,它简单地将遥感器的有效计数值 DN 和遥感器入瞳处的辐射量 L, 描述为线性关系^[4]:

$$L_t = a * DN \tag{3}$$

这里 *a* 即为定标参数(DN/W • m⁻² • sr⁻¹ • μm⁻¹)。 根据公式(3)可以获得各遥感器对应波段的定标系 数,见表 10。

表 10	HJ-1	/CCD	对应	波段	定标	系数
------	------	------	----	----	----	----

遥感器名称	b1	b2	Ь3	b4
HJ-1A/CCD1	0.43891	0.45358	0.80456	0.44181
HJ-1A/CCD2	0.50353	0.59179	0.82355	0.47542
HJ-1B/CCD1	0.63335	0.52586	0.45696	1.07027
HJ-1B/CCD2	0.43825	0.55844	0.59491	0.85486

4.4 差值分析

表 11 是利用 2008 年 10 月在敦煌辐射校正场 获取的 HJ-1A/1B 星 CCD 绝对辐射定标系数,利用 绝对定标系数将 DN 值图像转换为辐亮度图像的公 式为^[10]:

$$L_t = DN/a + L_0 \tag{4}$$

式中 L, 为辐亮度 W・m⁻²・sr⁻¹・µm⁻¹, a 为绝 对定标系数增益, L₀ 为偏移量 W・m⁻²・sr⁻¹・µm⁻¹。

将表 10 的交叉定标系数和表 11 的绝对辐射定 标系数,应用于 2008 年和 2009 年获取的辽东湾 HJ-1 数据,分别获取 4 个遥感器 HJ-1A/CCD1、HJ-1A/CCD2、HJ-1B/CCD1、HJ-1B/CCD2 各波段对应 的离水辐亮度值,见表 12~表 15。

卫星	202 alt H.R.	4 **	定标系数			
	通您价	<i>珍</i> 蚁	Band1	Band2	Band3	Band4
HJ-1A	CCD1	$a (\mathrm{DN/W} \cdot \mathrm{m}^{-2} \cdot \mathrm{sr}^{-1} \cdot \mu \mathrm{m}^{-1})$	0.5763	0.5410	0.6824	0.7209
		$L_0(\mathbf{W} \cdot \mathbf{m}^{-2} \cdot \mathbf{sr}^{-1} \cdot \mu \mathbf{m}^{-1})$	9.3183	9.1758	7.5072	4.1484
	CCD2	$a (DN/W \cdot m^{-2} \cdot sr^{-1} \cdot \mu m^{-1})$	0.6360	0.5910	0.8142	0.8768
		$L_0 (\mathbf{W} \cdot \mathbf{m}^{-2} \cdot \mathbf{sr}^{-1} \cdot \boldsymbol{\mu} \mathbf{m}^{-1})$	7.5575	7.0944	4.1319	1. 2232
HJ-1B	CCD1	$a (DN/W \cdot m^{-2} \cdot sr^{-1} \cdot \mu m^{-1})$	0.5329	0.52895	0.68495	0.72245
		$L_0(\mathbf{W} \cdot \mathbf{m}^{-2} \cdot \mathbf{sr}^{-1} \cdot \boldsymbol{\mu}\mathbf{m}^{-1})$	1.6146	4.0052	6.2193	2.8302
	CCD2	$a (DN/W \cdot m^{-2} \cdot sr^{-1} \cdot \mu m^{-1})$	0.5782	0.5087	0.6825	0.6468
		$L_0(\mathbf{W}\cdot\mathbf{m}^{-2}\cdot\mathbf{sr}^{-1}\cdot\mu\mathbf{m}^{-1})$	3.4608	5.8769	8.0069	8.8583

表 12 HJ-1A/CCD1 两组系数反演的高水辐亮度

波段	B1	B2	B3	B4
灰度值	22	15	16	12
定标系数计算的离水辐亮度	9.65602	6.8037	12.87296	5. 30172
绝对辐射定标系数计算的离水辐亮度	47. 49286	36.90223	30.95386	20. 79426

表 13 HJ-1A/CCD2 两组系数反演的离水辐亮度

波段	B1	B2	B3	B4
灰度值	23	13	12	6
交叉定标系数计算的离水辐亮度	11.58119	7.69327	9.8826	2, 85252
绝对辐射定标系数计算的离水辐亮度	43. 72102	29.09102	18.87029	8.066266

表 14 HJ-1B/CCD1 两组系数反演的离水辐亮度

波段	B1	B2	B3	B4
灰度值	24	19	15	3
交叉定标系数计算的离水辐亮度	15. 2004	9.99134	6.8544	3. 21081
绝对辐射定标系数计算的离水辐亮度	46.65119	39, 92542	28. 11871	6.982737

表 15 HJ-1B/CCD2 两组系数获取的离水辐亮度

波段	B1	B2	B3	B4
灰度值	26	14	15	3
交叉定标系数计算的离水辐亮度	11. 3945	7.81816	8.92365	2.56458
绝对辐射定标系数计算的离水辐亮度	48. 42794	33. 39803	29.98492	13.49652

2008 年 5 月在辽东湾现场测定的 40 个光谱数 据表明,对应 HJ-1/CCD 相机 4 个波段的离水辐亮 度总体来看,此区域的离水辐亮度介于 4~35Wm⁻² um⁻¹sr⁻¹。平均而言,对应 HJ-1/CCD 相机 4 个波 段的离水辐亮度分别为:b1:8~25Wm⁻²um⁻¹sr⁻¹; b2:10~29Wm⁻²um⁻¹sr⁻¹;b3:10~26Wm⁻²um⁻¹ sr⁻¹;b4:6-15Wm⁻²um⁻¹sr⁻¹。另外从表 12~15 还可看到,采用绝对辐射定标系数计算的离水辐亮 度,其值远远高于交叉辐射定标系数获取的离水辐 亮度值,而且高于实测值。

4.5 定标系数的应用

- 74 -

由前面的分析可知,各 CCD 的第四波段(近红 外波段)不同程度存在水体信息采集为零的现象,即 总辐亮度为零的现象。根据公式(2)可知,如果离水 辐亮度(L_w)为零,至少还有瑞利散射(L_r)和气溶胶 散射(L_a)的存在,所以总辐亮度不应为零,即遥感 器接受的灰度值不为零。那么瑞利散射(L_r)和气溶 胶散射(L_a)分别是多少呢?

瑞利散射 L, 的单次散射计算式为^[11]:

 $L_{r}(\theta_{v},\varphi_{v},\theta_{0},\varphi_{0}) = (F_{0}'\omega_{0}\tau_{r})/\cos\theta_{v}(Pr(\alpha-)+[\rho(\theta_{v})+\rho(\theta_{0})]P_{r}(\alpha+))$ (5)

其中, τ , 是大气分子散射光学厚度; +表示从 大气到海面,再向扫描方向传输; -表示从大气直接 到扫描仪的方向; $P_r(\alpha-)$ 为大气的后向散射函数; $P_r(\alpha+)$ 为大气的前向散射函数; $\rho(\theta_{\alpha})$ 和 $\rho(\theta_{0})$ 分别 为针对卫星天顶角和太阳天顶角的水表反射率; $[\rho(\theta) + \rho(\theta_{0})] P_r(\alpha+)$ 表示大气向前散射到达海面, 经反射再向扫描仪散射的贡献;在避开水汽 H₂O 和 氧气 O₂ 吸收的波段, $\sigma_{\alpha_{0}} = 1$ 。

L_a的单次散射计算式为^[12]:

 $L_{a}(\theta_{v},\varphi_{v},\theta_{0},\varphi_{0}) = (F_{0}'\omega_{a}\tau_{a})/\cos\theta(P_{a}(\alpha-) + [\rho(\theta_{v}) + \rho(\theta_{0})]P_{a}(\alpha+))$ (6)

式中, ω_a 气溶胶单次散射反照率,在强烈吸收 情况除外, $w_a = 1$; τ_a 为气溶胶光学厚度,在本研究 中通过 MODIS 869nm 波段的值计算得出(MODIS 与 CCD2 过境时刻相差 10 分钟); $\rho(\theta_a)$ 和 $\rho(\theta_b)$ 分 别为针对卫星和太阳天顶角的水表反射率。

利用公式(5)和(6),针对四景 HJ-1B/CCD2 图像,分别计算了卫星过境时的瑞利散射(L,)和

气溶胶散射(L_a),同时假定离水辐亮度为零,根据 公式(2)计算出遥感器能接受到的水体总辐亮度 Lt,进一步利用 HJ-1B/CCD2 基于水体目标获取 的交叉定标系数 0.85486(见表 11),计算了 HJ-1B/CCD2 能获取的灰度值,计算结果见表 16。由 表可见,在海洋上空瑞利散射变化不大,但气溶胶 散射变化较大,显然遥感器接受到的灰度值应该 不为零,根据瑞利散射和气溶胶散射反推其值,应 该在 7~27 之间,这与前面的区域灰度平均值基 本一致的。

表 16 HJ-1B/CCD2 各物理量的计算值

文件名	像元的实际 灰度值	计算的瑞利散射(L _r) (Wm ⁻² um ⁻¹ sr ⁻¹)	气溶胶散射(L _a) (Wm ⁻² um ⁻¹ sr ⁻¹)	水体总辐亮度 Lt (Wm ⁻² um ⁻¹ sr ⁻¹)	估算的像元 灰度值
449-91-20090118- L20000057877	0	0.142526	22.90126	23.04379	27
448-92-20090321- L20000083519	0	0.167996	9. 230765	9. 398761	11
449-91-20090530- L20000120829	0	0.176355	11.93841	12. 11477	14
449-92-20090630- L20000136000	0	0. 17273	5. 811084	5.983814	7

5 结束语

HJ-1A/CCD1、HJ-1A/CCD2、HJ-1B/CCD1、 HJ-1B/CCD2 近红外波段在水体信息采集中都存在 不同程度为零的现象,其中 HJ-1B/CCD2 最为凸 显,HJ-1A/CCD1、HJ-1A/CCD2 和 HJ-1B/CCD1 在 2009 年 6 月以后这种近红外水体信息为零的现 象逐渐得到改善。究其原因有待进一步探讨。

HJ-1B/CCD1 在南海海域水体信息采集过程中 存在明显的太阳耀斑现象,HJ-1A/CCD1 偶尔也有 太阳耀斑现象的出现,这可能与环境一号 CCD 相机 为非水色遥感器,其观测角度没有针对水体特性而 设计有关,因而在水体信息提取中,不可忽略太阳耀 斑的影响。建议在水体相关应用领域中,使用环境 一号 CCD 相机数据时先对数据质量进行检测。

本文的交叉定标系数为水体辐亮度的获取提供 了一种新的方法。通过对敦煌场获取的定标数据, 与本文获取的定标系数反演得到的离水辐亮度值进 行对比,用陆地场定标系数获取辐亮度值,其值普遍 高于交叉定标系数定标获取的离水辐亮度精度,因 而在水质定量遥感研究中,直接使用陆地定标场获 取的定标系数必须慎重。

根据所计算的瑞利散射和气溶胶散射,以及获取 的交叉定标系数,反推出 HJ1B/CCD2 可能接受到得灰 度值在 7~27 之间,与区域灰度平均值基本一致,这为 寻找波段 4 采集的水体信息为零的原因提供了参考。

参考文献

- [1] 王桥,吴传庆,厉青.环境一号卫星及其在环境监测中的应用[J].遥感学报,2010,14(1):113-121.
- [2] 国家环境保护部环境卫星中心筹备办公室."环境一号"A/B卫星数据接收情况介绍[R]. 2008.
- [3] 黄妙芬,邢旭峰,宋庆君,等,反射率基法获取北京一号小卫星多光谱 CCD 辐射定标系数[J]. 资源科学,2009,31(3):509-514.
- [4] 刘良明.卫星海洋遥感导论[M]. 武汉:武汉大学出版社,2005.69-74,182-183.
- [5] 牛生丽. HY-l COCTS 与 SeaWiFS 的交叉定标[D]. 国家海洋环境预报中心, 2004.
- [6] 唐军武,顾行发,牛生丽,等. 基于水体目标的 CBERS-02 卫星 CCD 相机与 MODIS 的交叉辐射定标[J]. 中国科学,E 辑,2005(增刊):59-69.
- [7] Tang J W. The system calibration and validation of HY 1 COCTS ocean color sensor[C]//SPIE. 2002:4892.
- [8] 蒋兴伟,牛生丽,唐军武,等.SeaWiFS与HY-1卫星COCT系统交叉辐射校正[J].遥感学报,2005,9(0):681-687.
- [9] 潘德炉,何贤强,朱乾坤. HY-1A 卫星传感器水色水温扫描仪在轨交叉定标[J]. 科学通报,2004,49(21):2239-2244.
- [10] ftp://219.142.87.39/
- [11] Tang J W. The system calibration and validation of HY-1 COCTS ocean colorsSensor[C]//SPIE. 2002:4892.
- [12] Gordon H R, Castano D J. Aerosol analysis with the Coastal Zone Color Scanner: A simple method for including multiple scattering effects[J]. Applied Optics, 1989, 28(7):1320-1326.