文章编号:0494-0911(2010)02-0008-03

中图分类号:P223

文献标识码:B

# DQM2000d、UGM05 和 EGM2008 地球 重力场模型精度比较

刘晓刚<sup>1</sup>,吴晓平<sup>1</sup>,田颜锋<sup>1,2</sup>,卢成静<sup>2</sup>

(1. 信息工程大学 测绘学院,河南 郑州 450052; 2. 73603 部队,江苏 南京 210049)

# Precision Comparison of the Earth Gravity Field Models of DQM2000d, UGM05 and EGM2008

LIU Xiaogang, WU Xiaoping, TIAN Yanfeng, LU Chengjing

摘要:给出由地球重力场模型计算重力异常和垂线偏差的公式,利用 36 阶、360 阶、1 800 阶 DQM2000d、UGM05 以及 EGM2008 地 球重力场模型计算国内某地区格网点重力异常和地面垂线偏差,并将其与实测数据进行比较,从而对三种模型的精度进行评估。 结果表明,在表示国内某地区格网点重力异常时,UGM05 模型精度最高,DQM2000d 模型精度次之,EGM2008 模型精度最低;在表 示地面垂线偏差时,三种模型的精度相当。

关键词:地球重力场模型;球谐函数;DQM2000d;LUGM05;EGM2008

地球重力场是反映地球物质分布与运动的基本物理场,在地球科学及相关学科的研究中具有极 其重要的作用。地球重力场模型就是用以描述和 表示地球重力场的一类基本参数的集合,是对地球 重力场的逼近或拟合。

由于全球重力数据覆盖的密度和数据精度差 别较大,所以已知的重力场模型的实际分辨率及其 精度也因地区而异,故重力场模型的精化是一个漫 长的过程<sup>[14]</sup>。自从1963年美国应用物理实验室确 定的第一个地球重力场模型 APL 1.0(最高完全阶 数为4 阶)问世以来,经过40 多年的发展,确定地球 重力场模型时采用的技术越来越先进,数据量和数 据种类不断增多,模型阶数不断增加,精度也不断 提高。

EGM2008 地球重力场模型是美国国家宇航局 哥达飞行中心(NASA/CSFC)、美国国家影像制图局 (NIMA)、美国国防部(DOD)以及俄亥俄州大学在 2008 年共同完成的高精度重力场模型,利用地面重 力数据(主要是重力异常数据)、GRACE 卫星跟踪 数据(ITG-GRACE03S 位系数信息以及相应的协方 差信息)和卫星测高数据等重力场信息构建而 成<sup>[57]</sup>。该模型的阶次完全至2159(另外球谐系数 的阶扩展至2190,次为2159),相当于模型的空间 分辨率约为9 km,因此无论在精度方面还是分辨率 方面都比 EGM96 重力场模型取得了巨大的进步<sup>[89]</sup>。

DQM2000d 地球重力场模型是我国西安测绘研 究所基于局部积分谱权综合法,选择国外重力场模 型 OUS91A 和 EGM96 作为基础模型,利用中国区域 20'×20'、15'×15'、10'×10'及 5'×5'的平均重力异 常数据解算的一个高分辨率地球重力场模型,该模 型的阶次完全至 2 160,在我国区域内精度要高于 OUS91A 和 EGM96 重力场模型<sup>[10]</sup>。

UGM05 地球重力场模型是我国信息工程大学 测绘学院采用轮胎调和分析方法,对全球陆地重力 数据、海洋测高数据进行集成和融合处理,实现陆 海数据的拼接而构建的基于全球重力场信息的超 高阶重力场模型,该模型的阶次完全至2160。

目前,研究构建地球重力场模型的机构日益增 多,模型的种类也越来越多,模型的更新周期越来 越短,但是,由于各构建模型采用的技术和使用的 数据不同,因而所建立的模型的精度千差万别。另 外,由于受地域限制,国外构建的模型基本上很少 采用我国国内的重力实测数据,因而国际上发布的 模型在描述我国地域重力场时,精度不高。因此, 有必要对国内外所构建的地球重力场模型精度进 行比较,以便于在利用这些模型处理实际地球物理 问题时提供必要的参考。

收稿日期: 2009-07-01

基金项目:国家自然科学基金资助项目(40774031);全国优秀博士论文专项基金资助项目(200344);中科院动力大地测量学重点实验室 开放基金资助项目(106-06,L04-03);信息工程大学博士生创新基金资助项目;航天一院项目资金资助项目
 作者简介:刘晓刚(1983—),男,甘肃天水人,博士生,主要从事卫星重力测量研究。

本文结合国内某地区实测的地面重力异常和 垂线偏差数据,分别利用 DQM2000d、UGM05 以及 EGM2008 地球重力场模型计算了该地区的重力异 常和垂线偏差数据,并对其精度进行比较,从而对 这三种模型的精度作出评估和比较。

#### 一、重力异常的比较

地球的扰动位可以表示为[11-12]

$$T = \frac{fM}{\rho} \sum_{n=2}^{N} \left(\frac{R}{\rho}\right)^{n} \sum_{m=0}^{n} \left(\bar{C}_{nm}^{*} \cos m\lambda + \bar{S}_{nm} \sin m\lambda\right) \bar{P}_{nm}(\cos \theta)$$
(1)

式中, fM 为引力常数; R 是地球平均半径;  $\rho$  是地心 向径;  $\theta$  是地心余纬;  $\lambda$  是地心经度;  $(\bar{C}_{nm}, \bar{S}_{nm})$  为完 全正常化地球扰动引力位系数;  $\bar{P}_{nm}(\cos \theta)$  为完全 正常化缔合勒让德函数。 在球近似的情况下,地面上的重力异常与扰动 位有如下的关系

$$\Delta g = -\frac{\partial T_R}{\partial \rho} + \frac{2}{\rho} T_R \tag{2}$$

式中, $T_R$ 为球面上的扰动位。将式(1)代人式(2), 并将其中的 $\rho$ 用R来代替,可得

$$\Delta g = \frac{fM}{R^2} \sum_{n=2}^{N} (n-1) \sum_{m=0}^{n} (\bar{C}_{nm} \cos m\lambda + \bar{S}_{nm} \sin m\lambda) \bar{P}_{nm} (\cos \theta)$$
(3)

具体计算时,根据式(3),分别利用 36 阶、360 阶、1 800 阶 DQM2000d、UGM05 以及 EGM2008 地 球重力场模型计算了国内某地区 1'×1'、5'×5'、 20'×20'、60'×60'的地面格网点重力异常数据, 并将其与该地区实测值进行比较,差值统计结果 如表1 所示。

表1 36 阶、360 阶、1800 阶 DQM2000d、UGM05、EGM2008 地球重力场模型计算的1'×1'、5'×5'、20'×20'、 60'×60'格网点重力异常与实测数据差值结果统计

| 格网        | 比对  | DQM2000d   | UGM05      | EGM2008       | DQM2000d      | UGM05      | EGM2008       | DQM2000d      | UGM05             | EGM2008                |
|-----------|-----|------------|------------|---------------|---------------|------------|---------------|---------------|-------------------|------------------------|
|           | 项目  | 36 阶       | 36 阶       | 36 阶          | 360 阶         | 360 阶      | 360 阶         | 1 800 阶       | 1800 阶            | 1 800 阶                |
| 1'×1'     | 最大值 | 31.478     | 30. 567    | 30.561        | 50.487        | 51.106     | 53.546        | 48.415        | 48.589            | 54.131                 |
|           | 最小值 | - 141. 348 | - 142. 073 | - 142.080     | - 107. 320    | - 107. 301 | - 106. 601    | - 92. 558     | - 93. 496         | - 89. 325              |
|           | 平均值 | - 29. 825  | - 30. 606  | - 30. 613     | - 9. 509      | - 9. 976   | - 10. 347     | -9.006        | - 10. 397         | - 10. 651              |
|           | 均方根 | 40.846     | 41.404     | <b>41.409</b> | <b>25.999</b> | 25.988     | 26.089        | 21.385        | 22.175            | 22.429                 |
| 5' × 5'   | 最大值 | 105.217    | 104.456    | 104.455       | 87.548        | 84.472     | 85.917        | 79.588        | 79.091            | 79.501                 |
|           | 最小值 | - 125.500  | - 126. 486 | - 126. 490    | - 100. 872    | - 97. 513  | - 98. 585     | - 80. 274     | - <b>69</b> . 144 | - 66. 898              |
|           | 平均值 | 2.370      | 2.042      | 2.038         | 3.799         | 3.808      | 3.884         | 3.868         | 3.874             | 3.956                  |
|           | 均方根 | 30.852     | 30.951     | 30.952        | 22.436        | 21.730     | <b>21.890</b> | 17.054        | 15.516            | 16.085                 |
| 20' × 20' | 最大值 | 94.279     | 94.682     | 94.684        | 83.374        | 77.081     | 78.089        | 89.441        | 85.798            | 84.893                 |
|           | 最小值 | - 74. 216  | -73.617    | - 73. 619     | - 92. 289     | - 82.651   | - 82.745      | - 109. 193    | - 98. 134         | - 99. 554              |
|           | 平均值 | 4.758      | 4.482      | 4.482         | 3.786         | 3.378      | 3.215         | 3.741         | 3.414             | 3.225                  |
|           | 均方根 | 25.367     | 25.531     | 25.533        | 17.897        | 16.955     | <b>17.387</b> | <b>18.546</b> | 17.826            | <b>18</b> . <b>537</b> |
| 60' × 60' | 最大值 | 270.319    | 270.238    | 270.226       | 285.624       | 268.524    | 279.934       | 287.553       | 260.704           | 254.854                |
|           | 最小值 | - 139. 981 | - 138. 649 | - 138.637     | - 178. 503    | - 187. 023 | - 193. 851    | - 178. 503    | - 206. 232        | - 181. 289             |
|           | 平均值 | 2.205      | 2.216      | 2.216         | 2.259         | 2.415      | 2.456         | 2.005         | 2.095             | 2.233                  |
|           | 均方根 | 27.744     | 27.754     | 27.754        | 32.720        | 32.389     | 33. 393       | 34.167        | 33.841            | 35.841                 |

由表 1 可以看出,36 阶、360 阶、1800 阶 DQM2000d、UGM05、EGM2008 地球重力场模型计算 的国内某地区 1'×1'格网点重力异常与实测数据的 差值均方差分别近似为 41 mGal、26 mGal、22 mGal; 5'×5'格网点重力异常与实测数据的差值均方差分 别近似为 31 mGal、22 mGal、16 mGal;20'×20'格网 点重力异常与实测数据的差值均方差分别近似为 25 mGal、17 mGal、18 mGal;60'×60'格网点重力异常 与实测数据的差值均方差分别近似为 28 mGal、 33 mGal、34 mGal。 总体来看,随着模型阶数的升高,DQM2000d、 UGM05、EGM2008 地球重力场模型计算的国内某地 区格网点重力异常精度逐渐提高,这可能是由于模 型阶数越高,模型截断误差越小而引起的。从两种 模型计算的1'×1'、5'×5'、20'×20'、60'×60'格网 点重力异常的精度趋势来看,一方面说明划分的格 网不能太大,否则就无法反映地球重力场的精细结 构;划分的格网也不能太小,否则容易导致计算误 差的累积,都将使得计算结果的精度下降。从文中 的计算结果来看,20'×20'格网点的计算精度最高。

mGal

另一方面说明模型阶次上升到一定程度之后(1800 阶以后),对计算值的精度影响并不大,这也可以看 出三种模型对高阶次的改善效果并不明显。

由表1可以明显看出,在计算国内某地区格网 点重力异常时,在较低阶次(36 阶左右),三种模型 的精度相当;在中高阶次(360 阶以上),UGM05 模 型要比 EGM2008 模型的精度高 ±(1~2) mGal, UGM05 模型与 DQM2000d 模型精度相当,但略优于 DQM2000d 模型。

### 二、垂线偏差的比较

在球近似的情况下,地面上的垂线偏差与扰动 位有如下的关系

$$\left. \begin{cases} \xi = \frac{1}{\gamma R} \frac{\partial T_R}{\partial \theta} \\ \eta = -\frac{1}{\gamma R \sin \theta} \frac{\partial T_R}{\partial \lambda} \end{cases} \right\}$$
(4)

将式(1)代入式(4),并将其中的ρ用R来代 替,可得

$$\xi = \sum_{n=2}^{N} \sum_{m=0}^{n} \left( \overline{C}_{nm}^{*} \cos m\lambda + \overline{S}_{nm} \sin m\lambda \right) \cdot \frac{d\overline{P}_{nm}(\cos \theta)}{d\theta}$$

$$\eta = \sum_{n=2}^{N} \sum_{m=0}^{n} m(\overline{C}_{nm}^{*} \cos m\lambda - \frac{\overline{S}}{2} \sin m\lambda) \overline{P} ((--0)) (i-0)$$
(5)

 $S_{nm}\sin m\lambda$ ) $P_{nm}(\cos \theta)/\sin \theta$ 

具体计算时,根据式(5),分别利用 36 阶、360 阶、1800 阶 DQM2000d、UGM05 以及 EGM2008 地球 重力场模型计算了国内某地区的地面垂线偏差数 据,并将其与该地区实测值进行比较,差值统计结 果如表 2 所示。

表 2 36 阶、360 阶、1 800 阶 DQM2000d、UGM05、EGM2008 模型计算的垂线偏差与实测数据差值结果统计 (")

| 垂线            | 比对  | DQM2000d  | UGM05     | EGM2008   | DQM2000d  | UGM05          | EGM2008       | DQM2000d  | UGM05     | EGM2008   |
|---------------|-----|-----------|-----------|-----------|-----------|----------------|---------------|-----------|-----------|-----------|
| 偏差            | 项目  | 36 阶      | 36 阶      | 36 阶      | 360 阶     | 360 阶          | 360 阶         | 1 800 阶   | 1 800 阶   | 1 800 阶   |
| Δξ            | 最大值 | 12.645    | 12.709    | 12.704    | 14.041    | 14.321         | 14.082        | 12.645    | 14.062    | 13.962    |
|               | 最小值 | - 12. 812 | - 12. 853 | - 12. 859 | - 16. 538 | - 16. 857      | - 16. 893     | - 16. 489 | - 16. 515 | - 16. 611 |
|               | 平均值 | - 1.507   | - 1.500   | - 1. 505  | -0.817    | - 0. 808       | -0.811        | -0.813    | -0.831    | 0.839     |
|               | 均方根 | 4.615     | 4.624     | 4.626     | 5.346     | 5. <b>49</b> 6 | 5. <b>459</b> | 5.343     | 5.741     | 5.714     |
| $\Delta \eta$ | 最大值 | 23.451    | 23.518    | 23.516    | 25.908    | 26.836         | 26.591        | 25.877    | 27.794    | 27.333    |
|               | 最小值 | -6.791    | - 6. 736  | -6.737    | -9.328    | -9.388         | -9.336        | -6.791    | -9.325    | - 9. 189  |
|               | 平均值 | 12.678    | 12.697    | 12.697    | 12.584    | 12.602         | 12.600        | 12.585    | 12.619    | 12.602    |
|               | 均方根 | 15.248    | 15.252    | 15.251    | 15.588    | 15.686         | 15.675        | 15.588    | 15.743    | 15.727    |

从表 2 可以看出,36 阶、360 阶、1 800 阶 DQM2000d、UGM05、EGM2008 地球重力场模型计算 的国内某地区垂线偏差子午分量、卯酉分量与实测 数据差值的均方差分别近似为 5"、16"。

总体来看,模型阶数对垂线偏差计算值的精度 影响不太明显,这是因为垂线偏差主要受当地地形 的影响;另外,在计算国内某地区垂线偏差时,三种 模型的精度相当。

三、结 论

从 DQM2000d、UGM05、EGM2008 地球重力场 模型的精度分析可以得出以下结论:

 1)随着模型阶数的升高,三种模型计算的国内 某地区格网点重力异常的精度不断提高;但是模型 阶次升高到一定程度之后(1800 阶左右),对计算 值精度的影响并不大。

 2) 划分的格网不能太大,否则不能正确反映地 球重力场的精细结构;划分的格网也不能太小,否 则将导致计算误差的累计。

3) 模型阶数对垂线偏差计算值的精度影响 不大。

4)总体看来,在表示国内某地区格网点重力异常时,UGM05模型精度最高,DQM2000d模型精度 次之,EGM2008模型精度最低;在表示国内某地区 地面垂线偏差时,三种模型的精度相当。

#### 参考文献:

 [1] SNEEUW N, VAN DEN IJSSEL J, KOOP R, et al. Validation of Fast Pre-mission Error Analysis of the GOCE Gradiometry Mission by a Full Gravity Field Recovery (下转第13页) 基准站控制软件和数据后处理软件。监测站控制 软件主要是要分时段实现对天线共享器多个天线 测量数据的采集,可将数据直接存储在监测站,并 可利用 ZigBee 无线传感器网络对数据传输的主控 中心(可放在某个基准站上),包括各种采集和控制 参数的遥控设置,完全实现无人值守。基准站控制 软件主要是将基准站采集的原始数据直接传输到 控制中心,也可将数据存储在基准站控制中心,解 码等工作由后处理软件实时完成,后处理软件可采 用两种模式(基于单机和基于网络的),后处理软件 的数据处理流程如图 3 所示。



图 3 后处理软件数据处理流程

### 四、结束语

采用本文提出的将 GPS 整周模糊度解算的 DC 算法推广到 GNSS 天线阵列接收机中,提高了数据

(上接第10页) Simulation[1] La La Cal

- Simulation[J]. Journal of Geodynamics, 2002, 33 (1-2): 43-52.
- [2] MOORE P, TURNER J F, QIANG Z. CHAMP Orbit Determination and Gravity Field Recovery [J]. Adv Space Res, 2003, 31(8):1897-1903.
- [3] YAN Yafen, WANG Guangjie, ZHANG Zhongjie. Characteristics and Tectonic Significance of the Gravity Field in South China[J]. ACTA GEOLOGICA SINICA, 2004, 78(6):1235-1244.
- [4] 肖云,夏哲仁,王兴涛.用 GRACE 星间速度恢复地球 重力场[J]. 测绘学报,2007,36(1):19-25.
- [5] PAVLIS N K, HOLMES H A, KENYON S C, et al. An Earth Gravitational Model to Degree 2160: EGM2008[C]
   // The 2008 General Assembly of the European Geosciences Union. Vienna, Austria: [s. n. ], 2008: 13-14.

解算的效率,同时通过与无线传感器网络的集成, 有效地解决了 GNSS 变形监测系统在通信困难地区 的无线数据传输问题。并且由于无线传感器网络 具有节点定位功能,可以将 GNSS 的几何监测与无 线传感器网络的物理监测集成起来,实现立体化监 测,为重大自然或工程灾害的监测服务,为防灾减 灾提供辅助参考依据。

## 参考文献:

- [1] 冉崇宪,邹进贵,王新洲,等. 基于 GPS 天线阵列技术的变形监测系统研制[J]. 测绘通报, 2006(8): 28-30.
- [2] 李征航.利用 GPS 进行高精度变形监测的新模型[J]. 测绘学报,2002,31(3):206-210.
- [3] 李善仓,张克旺.无线传感器网络原理及应用[M].北 京:机械工业出版社,2008.
- [4] 敦旭锋,田丰,孙小平.无线传感器网络节点的研究与 设计[J].沈阳航空工业学院学报,2007(5):19-21.
- [5] GENG J, TEFERLE F N, SHI C, et al. Ambiguity Resolution in Precise Point Positioning with Hourly Data[J].
   GPS Solutions, 2009, 13(4):263-270.
- [6] ZOU Shuangchao, WANG Xinzhou, ZOU Jingui, et al. Research on Application of GPS Multi-antenna Array Deformation Monitoring System [C] // GNSS 2005 Conference. Hong Kong: [s. n. ], 2005.
- University of California at Los Angeles. WINS: Wireless Integrated Network Sensors [DB/OL]. [2009-05-08].
   http://www.janet.ucla.edu/WINS/bibio.htm.
- [6] NGA. Earth Graritational Model 2008 (EGM 2008) [EB/ OL]. [2009-05-08]. http://earth-info.nga.mil/GandG/ wgs84/gravitymod/egm2008/index.html.
- [7] 刘成,张幸福. EGM2008 重力场模型在 GPS 高程拟合 中的应用和分析[J].铁道勘察,2009,35(1):1-3.
- [8] NASA. EGM96 General Description [EB/OL]. [2009-05-11]. http://cddis.nasa.gov/926/egm96/gendesc. html.
- [9] 边少锋,柴洪洲.大地坐标系与大地基准[M].北京: 国防工业出版社,2005.
- [10] 夏哲仁,石磐,李迎春.高分辨率区域重力场模型 DQM2000[J].武汉大学学报:信息科学版,2003,28 (S1):124-128.
- [11] Moritz, Helmut. Advanced Physical Geodesy [M]. Karlsruhe: Wichmannverlag, 1980.
- [12] 陆仲连. 地球重力场理论与方法[M]. 北京: 解放军 出版社,1996.